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Executive Summary

1 Introduction

As industrial equipment becomes more sophisticated, computers and communications

more powerful, and robots more capable, the need for a method of unifying diverse

machines into coherent systems becomes increasingly urgent. The unification of

diverse systems can be accomplished using a machine control system architecture.

Without the consistent approach provided by an architecture, integrating variegated

equipment into a system that does useful work is a tedious, labor-intensive, error-prone

undertaking. Despite the wide acknowledgment of the benefits of a widely applicable

machine control architecture and the development of many specific machine control

architectures, no broadly applicable architecture has gained widespread acceptance.

To address the need for a widely applicable and broadly accepted machine control

architecture, the Robot Systems Division (RSD) and the Factory Automation Systems

Division (FASD), branches of the Manufacturing Engineering Laboratory at the

National Institute of Standards and Technology (NIST) have been developing and

experimenting with architectures for more than sixteen years. This work indicates that

there are aspects of control which are common to all control systems in a broad range

of applications. These aspects have been captured in a number of control system

reference architectures, most particularly the Real-Time Control System (RCS)

architecture and the Manufacturing Systems Integration (MSI) architecture. These

architectures share many common elements, but there are also some differences.

RSD and FASD are engaged in a joint project to assess the feasibility of formulating a

single reference architecture and to outline the architecture. This report is written

primarily for the team of researchers charged with developing the joint architecture.

The report strives to provide team members with an understanding of the basis on which

RCS and MSI were compared, a list of technical issues, a framework for developing the

joint architecture, and references to existing work on architectures. The report also

provides a preliminary sketch of a joint architecture useful for the applications

considered in RSD and FASD. It is expected that such an architecture will be applicable

in a wider range of applications besides those considered by RSD and FASD, as well.

Sections 1 and 2 of this report provide an Introduction and Preliminary Definitions. In

section 3 we discuss the Definition of an Architecture, giving five elements required for

the specification of an architecture. Using these elements, sections 4 and 5 discuss

General Architecture issues and Control Architecture Issues, respectively. Section 6

characterizes types of architectures and describes several architectures other than RCS
and MSI, to illustrate each type. Section 7 describes the RCS and MSI architectures and

assesses their compatibility. A more detailed comparison of the two architectures is

given in appendix C. Section 8 outlines the proposed single reference architecture.

Section 9 gives conclusions regarding the comparison of architectures, and the

formulation of reference architectures. Additional appendices provide a glossary of

terms, an annotated bibliography, a list of general architecture issues and control

architecture issues, and more.
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2 Definition of an Architecture

The definition of an architecture involves tiers of architectural definition and elements

of architectural definition.

2. 1 Tiers of Architectural Definition

An architecture consists of elements which are more or less concrete. A grouping in

which all elements have similar concreteness is called a tier of architectural definition.

If we were talking about the architecture of houses, such concepts as surfaces to walk

on and load bearing systems might appear at a high tier of architectural definition, while

particularizations of these concepts, such as wooden floors to walk on and post-and-

beam construction for bearing loads would appear at a lower tier.

In general, the elements defined at a less concrete tier of architectural definition will be

more generally applicable than those which are more concrete. Specifying an

architecture using several tiers enables the architecture developers to indicate which

parts of the specification are intended to be broadly applicable and which are not.

2.2 Elements of an Architecture

At each tier of architectural definition, the definition of an architecture consists of

specifying five elements of architectural definition. These are:

• statement of scope and purpose,

• domain analyses,

• architectural specification,

• methodology for architectural development, and
• conformance criteria.

The statement of the scope and purpose of an architecture describes the range of

application areas to which the architecture is intended to apply and the general

objectives of having an architecture for those areas.

The area of potential application for an architecture is termed its domain. A domain

analysis is a systematic examination of the target domain to reveal its essential

elements. Commonly used forms of domain analysis are functional analysis,

information analysis, and dynamic analysis.

An architectural specification is a prescription of what the pieces (software, languages,

execution models, controller models, communications models, computer hardware,

machinery, etc.) of an architecture are, how they are connected (logically and

physically), and how they interact. The architectural specification is the heart of a

machine control system architecture.

A methodology for architectural development is a set of procedures for applying an

architecture to an application domain. The architectural specification describes what

you are trying to build, and the methodology tells how you build it.

I

I

I
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Conformance criteria specify how an element of an architecture is judged to conform

to the architecture. Conformance criteria may apply to elements of architectural

specification or to methodologies for architectural development.

3 Issues

Over 30 pages of the report are devoted to the initial presentation of dozens of issues.

There is no reason to single out a few and no brief way to state them all, so this

executive summary simply categorizes, summarizes, or names them. Appendix B is a

listing of the issues without explanation. Architecture issues are divided into two sets:

general architecture issues and control architecture issues.

3.1 General Architecture issues

The general architecture issues are organized around the elements of architectural

definition listed earlier.

The scope of an architecture may be characterized by its extent in several different

dimensions: application domain, life cycle, organizational extent, and tiers of

architectural definition.

Domain analyses for an architecture should cover functional, information, and dynamic

aspects. Appropriate methodologies for conducting the analyses must be used.

Architectural specification issues include: component balance, granularity, architecture

definition languages, and a set of miscellany at the lowest tier of architectural definition

(hardware, operating system, and processes).

Methodology issues include the use of cyclic development, the use ofCASE tools, and

the question of how to map architectural components onto software and hardware

components at the lowest tier of architectural definition.

Conformance issues include: conformance testing methods, the usefulness of

conformance testing, whether conformance to methodologies for architectural

development should be required, how conformance classes might be used, and

providing for non-conformance.

3.2 Control Architecture Issues

One large set of issues concerns the nature of individual controllers: their functionality,

operational states, operational modes, internal workings, interactions with humans, and

so forth.

Other sets of issues concern:

• how collections of controllers interact,

• how to specify, generate, and execute tasks,

• what data is required for control and what data handling architecture

is suitable for dealing with the data,

• how to provide for process planning, scheduling, and resource

allocation.

V
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II

• how to provide for communications among the components of a

control system,

• how to incorporate checks and safeguards in control systems and how

to provide for recovering from errors.

Sixteen desirable characteristics of a control architecture have been identified. There is

general agreement about what is desirable, although not how to achieve it. Achieving

one desirable characteristic may help or hinder in achieving another.

4 Types of Architectures

There is general agreement that three aspects of control system architectures are

important: control, communications, and information. These aspects are largely

independent but must be integrated for a control system to be effective. Most

architectures reviewed for this report focus on the control aspect, but several emphasize

information.

Four commonly discussed types of control architecture are: centralized, hierarchical,

modified hierarchical, and heterarchical. RCS, MSI, and the proposed joint architecture

are all hierarchical. The hallmark of a hierarchical control architecture, of course, is that

controllers are arranged in a hierarchy. In the MSI and RCS architectures, controllers

are arranged in a special type of hierarchy in which each controller has one superior and

zero to many subordinates. Controllers interact through a command-and-status

protocol.

5 RCS and MSI

To prepare for formulating a joint architecture, RCS and MSI were studied, and their

compatibility was assessed.

5.1 RCS

RCS is an architecture for complex, integrated machine control systems which work in

a changing world and keep pace with changes in real time. RCS is intended for

applications as diverse as space robotics and discrete parts manufacturing. The
elements of an RCS system that do information processing are: sensory processing,

world modeling, value judgment, and behavior generation.

The sensory processing function of an RCS system takes sensory data at the lowest

hierarchical level, interprets the data, and passes the interpreted data to world modeling.

The world modeling function serves to keep a description of the state of the world. It

receives information from sensory processing for updating the world model. It also

predicts events and sensory data and answers questions about the world model.

The behavior generation system in RCS is strictly hierarchical. That is, each controller

responsible for behavior generation has one superior and zero to many subordinates, for

the purposes of performing actions. Superiors interact with subordinates by sending

VI
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commands to them and receiving status messages from them. Each controller has a

number of tasks that it can carry out, and these tasks are understood by the superior of

the controller.

The RCS architecture decomposes system activities into hierarchical levels. The levels

are characterized by the relative amount of time taken to perform activities and by the

relative spatial extent of the activities. Roughly an order of magnitude change in

temporal and spatial extent is expected between any two adjacent levels, with activities

getting faster and more localized at the lower levels.

5.2 MSI

The goal of the MSI architecture is to integrate the operation of a shop which

manufactures discrete metal parts. Particular emphasis is placed by the architecture on

the integration of shop planning, scheduling, and control functions in both nominal and

error situations. The architecture approaches integration by identifying the systems in

the shop which need to be integrated, examining the interactions among the systems,

and proposing mechanisms to ensure that these systems function in a cohesive manner.

For systems which interact directly, the MSI architecture defines an architectural unit

called a control entity, which consists of a planner and its associated controller. The
planner in the control entity is required to support scheduling of plans and may support

process planning and batching. The controller in the control entity must support task

execution. The controllers interact through hierarchical control. A mechanism for

external intelligent intervention, called a guardian, is included in the MSI architecture.

A control entity may have as many as five types of interfaces: a planning interface, a

controller interface, a guardian to planning interface, a guardian to controller interface,

and a planner to controller interface. The MSI architecture can be used with a

centralized or a distributed planner, and other combinations of control and planning

systems.

For systems which interact indirectly, the MSI architecture specifies that it is sufficient

to describe the shared information at a conceptual level and provide guidelines for the

access of the information. The description of the shared information is given through a

number of information models. The information models and the guidelines for

information access form the information architecture of MSI. Three of the most

important information models in MSI are the Integrated Production Planning

Information Model, which describes the manufacturing environment at a high level of

abstraction, the Process Plan Model, and the Production Plan Model. Process and

production plans are key vehicles by which information is shared between planning and

control systems in the MSI architecture. MSI defines six other information models, as

well. Data access guidelines include, for example, the requirement that information

which must be shared among systems be placed in a data repository where it is possible

for all systems which need this information to access it
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5.3 Compatibility Assessment

RCS and MSI are different enough that a system built with the RCS architecture cannot

be expected to be interoperable with one built with the MSI architecture. Many of the

differences, however, are the result of differing application requirements. MSI and RCS
strengths and weaknesses complement each other. RCS provides for real-time control

and operation in a range of environments, from the highly structured to the highly

unstructured, which may be highly variable. MSI provides for a high degree of

integration of planning, scheduling and resource allocation. MSI specifically addresses

error-recovery for resource problems, scheduling difficulties and task failure. It appears

to be feasible to define an architecture combining the strengths of RCS and MSI.

6 Proposed Architecture

An outline of a specific proposed architecture is given in this report. An effort involving

a larger group of people from RSD and FASD has begun to define a joint architecture

fully. That group is not bound by the outline given here, which is given as a starting

point. This executive summary summarizes the outline.

The proposed architecture has four tiers of architectural definition:

a domain-independent, application-independent tier (tier one),

a domain-specific, application-independent tier (tier two),

a domain-specific, application-specific tier (tier three),

an implementation tier (tier four).

At each tier of architectural definition, all five elements of an architecture are

considered. The lowest tier is not discussed further, as it consists of implementations of

the architecture to be built in the future.

The first tier gives many of the guidelines necessary to construct a control system. It is

assumed the system being controlled must interact with its environment and react to

unpredicted changes in the environment. At this tier, the architecture is intended to be

applicable to (at least) factories, robots, autonomous vehicles, construction machines,

and mining machines.

The second tier of architectural definition is recommended to be focused on discrete

parts manufacturing. This is an important, broad domain requiring the features of

existing RSD and FASD architectures, particularly real-time control and integration of

control with planning, scheduling, and other required functions.

Tier three, which is domain-specific and application-specific, but is not an

implementation, is not delineated further in this report.
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Conclusion

This report provides a clear definition of an architecture, delineates important issues

concerning architectures for machine control systems, presents a sampling of existing

architectures, compares the MSI and RCS architectures, concludes that an architecture

combining the strengths of MSI and RCS is feasible, and outlines a proposed joint

architecture for RSD and FASD. Completing the proposed architecture will require a

great deal of work, but the end result will be an architecture which fills the needs for

real-time control and information integration.
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1 Introduction

As automation of manufacturing systems becomes commonplace, the design,

construction, and use of computerized control systems has become an increasingly vital

problem. Computerized control systems are typically large, complex systems that are

composed of components of lesser complexity which are developed and validated

separately.

In a manufacturing environment, components are diverse systems such as production

machinery, communications software and hardware, computer hardware, databases,

file systems, and production management software.

The purpose of a control architecture is to enable these components to work together in

an integrated way to give satisfactory product quality at a reasonable price. At present,

for each distinct set of components, a systems integrator defines a unique control

architecture. This approach to developing control architectures is expensive, time-

consuming and makes diagnosis of system problems difficult. The creation of a control

architecture which can be applied to classes of machine control systems—a reference

architecture—is therefore highly desirable.

1.1 Benefits of Reference Architectures

As United States manufacturing continues to lose market share in the global market, it

is apparent that the manufacturing industry must reduce its costs to be competitive.

Consequently, significant effort is being devoted to making manufacturing in the

United States more cost-effective.

The Manufacturing Systems Committee of the Department of Defense Manufacturing

Technology (DoD ManTech) Advisory Group has recently released a report [Plonsky 1]

which analyses the distribution of the costs in the manufacturing of defense materials

and proposes a plan for focusing ManTech-funded research on specific technical areas

to reduce the cost of manufacturing to DoD. While the report focuses upon defense

production, the findings of this report regarding costs in the manufacturing

environment and technical strategies for reducing costs are relevant to all consumers of

manufactured goods.

The report states that, in order to reduce overall manufacturing costs, technology must

be developed and deployed that:

(1) produces manufacturing systems that can efficiently make a wide variety of

products which are produced in small numbers,

(2) permits the rapid realization of new products.

Since costs involved in the planning, scheduling, and control of factory and supplier

processes and operations, the manufacturing support costs, comprise approximately

37% of a manufacturing company’s cost, technologies which reduce these present a

substantial opportunity for cost savings.

The study advocates a number of technical strategies to achieve the desired cost-

savings. Among these are:

1
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(1) the integration of multi-vendor information systems for customers, vendors

and suppliers (enterprise integration),

(2) the development of systems which streamline, automate and integrate

manufacturing management (command, control, and communications—

C

3
),

(3) the development of a comprehensive system for creating quality products

(quality management).

The technical barriers for the implementation of these strategies include:

(1) the lack of an information architecture (enterprise integration),

(2) the lack of integration methodologies (C3 ),

(3) the lack of manufacturing and industrial engineering support tools (C3 ,

quality management).

A reference architecture, which provides the framework for components of a complex

control system to work together as a whole rather than as a disjoint set, encompasses

both information architecture and integration methodologies. Furthermore, a reference

architecture can promote the development of interoperable support tools.

In the manufacturing environment, different components of the control system are

made by different vendors and are designed to work with humans, but not with other

automated systems. Typically, a reference architecture specifies integration rules and

standard interfaces among components. By adhering to the standard interfaces and

integration rules required by the architecture, different vendors can construct

components which are interoperable. Using the interoperable components and system

integration rules and methods, components may be integrated to build a machine,

groups of machines and people can be integrated to form a workstation, workstations

may be integrated to form cells and so on, to any degree of complexity desired. The
availability of a reference architecture which defines interoperable components can

improve the flexibility, timeliness, reliability, safety and extensibility of control

systems.

Once a reference architecture is available which can serve as a standard, tools for

building control systems can be constructed and applied, and a body of knowledge

about how to apply the architecture can be built. Public availability of the architecture,

tools and the knowledge of how to apply them to real-world control problems will

greatly reduce the time and cost required for building military and commercial control

systems.

1.2 Reference Architectures at NIST

The Manufacturing Engineering Laboratory (MEL) at the National Institute of

Standards and Technology (NIST) is conducting research on control of mechanical

systems for use in such diverse fields as discrete parts manufacturing, coal mining,

under-ice submarining, and space exploration.

2
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As a result of differing requirements in each domain, the characteristics of control

systems vary greatly. Nevertheless, more than sixteen years of experience within the

Robot Systems Division (RSD) and the Factory Automation Systems Division (FASD)
of MEL indicate that there are aspects of control which are common to all control

systems in a broad range of domains. These aspects have been captured in a number of

control system reference architectures that provide both specifications for the parts of

the architecture and their behaviors and methodologies for constructing control systems

according to the prescribed specifications. One class of reference architecture

(developed by RSD) is the Real-Time Control System (RCS) architecture [Albusl],

[Albus2], [Albus3], [Albus5], [Barberal], [Hermanl], [Quintero3] and specializations

of it, such as the NASA/NBS Standard Reference Model for Telerobot Control System

Architecture (NASREM) [Albus4]. FASD reference architectures include the

Automated Manufacturing Research Facility (AMRF) control architecture [Jones2],

[Jones5], [McLeanl], [Simpson 1] and the Manufacturing Systems Integration (MSI)

architecture [Senehi2], [Senehi3], [Wallacel].

The architectures under active investigation in RSD and FASD share many common
features. For example, all consist of a set of controllers arranged in a command
hierarchy. In all the architectures each type of controller has its own specialized set of

commands it can carry out. All the architectures implement command execution by

message passing between controllers, and so forth. But there are also some differences.

Timing issues and sensory processing receive more attention in RSD architectures,

information integration, scheduling and resource definition issues more in FASD
architectures.

An assessment of the feasibility of formulating a single reference architecture using the

RCS and MSI architectures has been performed, and it has been determined that such

an architecture is possible. RSD and FASD are engaged in a joint project to outline an

architecture which includes features of both RCS and MSI. It is expected that such an

architecture will be applicable in a wide domain beyond that of the two NIST divisions.

1.3 About This Report

This report documents the work performed in assessing the feasibility of combining the

RCS and MSI architectures into a single reference architecture. The report is written

primarily for the team of researchers charged with developing the joint architecture.

The report strives to provide team members with:

(1) an understanding of the basis on which the two architectures were compared

and found to be compatible,

(2) a preliminary list of the technical issues which need to be resolved in

formulating a joint architecture,

(3) a framework for developing the joint architecture,

(4) a preliminary sketch of the joint architecture, and

(5) references to existing work on architectures.
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The report is not intended as a tutorial and assumes considerable familiarity with

control architectures and manufacturing.

1.3.1 Feasibility Assessment Process

In order to assess the feasibility of combining RSD and FASD architectures, the authors

first examined approximately one hundred papers about the RSD and FASD
architectures, externally developed architectures, and frameworks for architectures.

The primary goals of this literature search were to assist the authors in developing a

framework for comparing the two architectures and to understand how the NIST

architectures relate to other architectures. The literature search was not intended to be

comprehensive, but an attempt was made to obtain a wide cross-section of papers on

architectures.

The review of the control architecture literature revealed that architectures tend to vary

widely in content and emphasis. The authors did not find standard terminology for

discussing control architectures, or a standard framework for comparing architectures

which was mature enough for immediate use.

To remedy this situation, the authors developed a terminology with which to discuss

both architectures and defined a framework for discussing and comparing the two

architectures. Using this terminology and framework, the authors developed a set of

issues which must be addressed when constructing the joint architecture.

The authors then performed a comparison of RCS and MSI on every issue and

combined these results to formulate the conclusion that a joint reference architecture is

indeed feasible. Finally, the authors generated an initial formulation of the contents of

the joint architecture.

1.3.2 Feasibility Report

The order of the feasibility report differs somewhat from the order in which the work
itself was performed. The report presents a more unified view of the conclusions and

results of the work than would otherwise have been possible. Sections of the report

summarize several key aspects of the work, particularly the issue by issue comparison

of RCS and MSI and the results of the literature survey.

Section 2 presents terminology used in the remainder of the report for discussing

control architectures. In Section 3, we describe our framework for architectures. Using

this framework, we then discuss (Section 4) general architecture issues relevant to any

architecture, not just to architectures for control systems. In Section 5, we narrow our

focus to issues pertaining to control architectures. There is some overlap between the

issues in Section 4 and those in Section 5. Many issues are clearly in one section or the

other, but a few could have been placed in either section. Section 6 discusses

classifications of architectures and describes several architectures other than RCS and

MSI to illustrate each type. Section 7 describes the RCS architecture from RSD, the

MSI architecture from FASD, and assesses the compatibility of RCS and MSI. A more

detailed comparison of the two architectures is given in Appendix C, using the issues
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identified in Section 4 and Section 5. Appendix B presents a list of all the issues without

discussion, for easy reference. Appendix F presents issues which apply primarily to the

RSD architectures.

Section 8 outlines a proposed single reference architecture.

Section 9 gives conclusions regarding the comparison of architectures, and the

formulation of reference architectures.

A list of all papers cited in this report is given in the list of references following Section

9. A review of the literature, listing the papers read and the authors’ summaries and

comments on them is in Appendix D.

Appendix B gives a glossary of terms applicable within this report. Although generated

as a result of the literature search, in many cases there is no generally accepted

definition for commonly used terms. For these terms, the authors have selected one or

more commonly used definitions. No attempt has been made to define every use of each

term.
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2 Preliminary Definitions

In this report, we will use a number of terms which have a variety of meanings in the

manufacturing setting. Although an international standards effort is underway to

produce a standard terminology, results of this effort are not yet mature enough for use

[IS04]. To clarify this situation, we give definitions for terms as they are used in this

report. Throughout the report, terms which are assigned a specialized meaning are

printed in italics the first time that they occur. In some cases, the definition of a term

may be further refined later in the report.

An architecture gives the design and structure of a system. The class of situations in

which an architecture is intended to be used is termed its domain . For example, an

architecture might apply to the manufacture of discrete parts. An application is a subset

ofone or more situations in the domain of an architecture having similar characteristics.

A particular shop, with a specific set of equipment and configuration is an example of

an application consisting of a single situation. The class of 3-axis milling machines is

an example of an application encompassing several situations. The realization of an

architecture in hardware and software for an application will be called an

implementation of the architecture.

In this report, a reference architecture is defined to be a generic architecture for a

domain which is broader than a single situation. Henceforth in this report, we shall use

architecture and reference architecture interchangeably.

A complete definition of an architecture requires a number of elements ofarchitectural

definition . Elements of architectural definition are conceptual entities, which may or

may not have any physical realization. The elements of architectural definition are

discussed in detail in Section 3.

One of the main elements of architectural definition is the architectural specification .

which describes the architecture. An architectural specification is a prescription of what
the pieces (software, languages, execution models, controller models, communications

models, computer hardware, machinery, etc.) of an architecture are, how they are

connected (logically and physically), and how they interact. The pieces of an

architecture described above have specific meaning to the architecture and will be

referred to as architectural units . Architectural units are frequently defined by giving

each one distinct functional characteristics, although this is not the only mode of

definition. We shall refer to the realization of an architectural unit in an implementation

as a component of the implementation.
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3 Definition of an Architecture

An architecture consists of architectural units each of which is more or less concrete in

nature. Architectural units of similar concreteness can be grouped together to form a

cross section of the architecture where all units are at the same level of concreteness (or

abstraction). We shall refer to such a grouping as a tier of architectural definition . or

simply tizi}- The concept of tier of architectural definition appears under different

names in [Biemansl, section 2.4], [Bohmsl, throughout], [Domier2, section 3], and

[Michaloskil, page 2-2]. A complete specification for an architecture includes an

architectural specification for each tier.

At each tier, the definition of an architecture consists of specifying a number of

elements of architectural definition. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development

(5) conformance criteria

These elements of architectural definition vary in indispensability. For example, an

architecture must have an architectural specification, but it is possible to use an

architecture which omits conformance criteria. Definitions of existing reference

architectures include different subsets of these elements of architectural definition and

place emphasis on them in varying degrees. However, an architecture which is

completely defined addresses all elements of architectural definition in a balanced

fashion.

The remainder of this section expands on the notions of tiers and elements of

architectural definition.

3.1 Tiers of Architectural Definition

Tiers of architectural definition, as defined above, are distinguished by their degree of

abstraction, with lower tiers being more concrete than upper ones. It is useful to define

tiers by identifying some specific aspect (or a set of aspects) that is broad in a higher

tier but becomes narrower in the next tier down.

To illustrate the idea of tiers, we consider a hypothetical architecture with three tiers.

The highest (most abstract) tier is characterized by being applicable to a broadly-

defined domain (discrete parts, perhaps).Within this broadly-defined domain, there are

any number of applications which are deemed by the developers of the architecture to

1. An alternative, somewhat more intuitive term for this concept would be level ofabstraction. The term tier

ofarchitectural definition was chosen in order to avoid confusion with other uses of the term level (notably

hierarchical level of control), both in this report and in prevailing control architecture literature. The notion

of hierarchical levels of control is used throughout this report and is the focus of the first section of

Appendix E.
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differ significantly from each other. For each application specified, the middle tier of

the architecture specifies the application-dependent features of the architecture and has

architectural units which generically identify functions, information and dynamics. For

each application, a number of implementation-specific architectures may be described.

This lowest tier of architectural definition is implementation-specific and describes the

mapping of architectural units onto software and hardware components.

At each less abstract tier of architectural definition, each architectural unit included in

the architecture will be described in greater detail. For example, at the highest tier of

architectural definition, methods for generating information models might be given, at

a less abstract tier of architectural definition, specific information models might be

given, and at the least abstract tier, the information models might be implemented as

locations in memory or as a database schema. The language used to express the

specification may well be different at each tier of the architecture.

Table 1 shows sample sets of architectural units which might be defined at each tier of

architectural definition of an architecture which has three tiers. These architectural

units are grouped into sets corresponding to the five elements of architectural

definition. The table is meant only to give examples; it is not intended to outline any

existing or proposed architecture.
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Table 1: Sample Architectural Units for a Three-Tiered Architecture

Element

°f

Architectural

Definition

Tier of Architectural Definition

Top Tier Middle Tier Bottom Tier

statement of

scope and

purpose

domain-dependent,

application-

independent,

statement of scope and

purpose

domain-dependent

application-dependent,

implementation-

independent

statement of scope and

purpose

domain-, application-,

and implementation-

dependent

statement of scope and

purpose

domain

analyses

activity analysis domain-specific

information analysis

hardware-specific

dynamic analysis

architectural

specification

the general functionality

of system components

logical actuator

definitions

actuator hardware

specifications

logical sensor

definitions

sensor hardware

specifications

methods for

communicating among
components

logical connection

diagrams

wiring maps

communications

execution model

communications

hardware specifications

templates for

information models

information models database system

schemas

template for task

definitions

task definitions source code for driving

actuator

the type and content of

logical control

interfaces among
controllers

controller hierarchy

diagrams

source code for

generating commands to

subordinates

methodology

for

architectural

development

CASE tool used to

define tasks

automatic generator

used to write C source

code for task

conformance

criteria

correct information

modeling language must

be used

information models

must pass through

EXPRESS parser

data files must pass

through data file reader
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Three tiers are used in Table 1 only because several convenient examples fit into three

tiers. The top and middle tiers of Table 1 may be collapsed into one to make a two-tier

model.

Different architectures may have different numbers of tiers of architectural definition.

For example, the architecture proposed by Domier described in Appendix E has four

explicit tiers of architectural definition. The RCS architecture may reasonably be

divided into three tiers and the MSI architecture into two tiers, although neither of the

two has explicit tiers in existing descriptions. If all architectures had the same number

of tiers of architectural definition, it would be feasible to give a unique name to the

architectural specification at each tier (the most abstract tier of architectural

specification might be called a canonical form, for example). Since this is not the case,

we are using the same term for each tier.

3.2 Statement of Scope and Purpose

The statement of scope of an architecture describes the range of areas to which the

architecture is intended to be applied. It is useful to identify explicitly items which are

out of scope, and to identify general characteristics of the domain which may extend or

limit its applicability to other domains. As Biemans and Vissers observe [Biemansl, p.

390], this statement is absent in the majority of proposals for (CIM) architectures.

A statement ofmtroose identifies what the objectives of an architecture are within the

given scope. The statement of purpose of an architecture should be a major determinant

of the contents of the architecture. If the objective is to achieve interoperability between

components of an implementation, it would be expected that definitions of shared

information and interfaces between components would be stressed. If the objective is

to guarantee real-time performance of the resulting control system, execution models

may be stressed.

3.3 Domain Analyses

A critical step which must take place before an architecture can be formulated is to

perform analyses of the target domain which reveal its essential characteristics. These

analyses are domain analyses . The type of analyses done, the order in which the

analyses are performed and the language in which the results are expressed are part of

the methodology for domain analysis. The results of the domain analyses may be very

much different depending on the types of analysis performed and the analysis

methodologies used. Architectures often have biases consistent with the view(s) of the

domain which the domain analyses examined. It can be difficult to compare

architectures which were generated using different domain analysis methods.

Many methods for domain analysis exist. It is beyond the scope of this document to

discuss all, or even a broad set of them. In this report, for the purpose of comparing

architectures, the authors will adopt a specific set of types of analyses which are widely

accepted, described immediately below.
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3.3.1 Types of Analysis

An analysis , in general, is an examination of the components of some complex and how
they relate to one another. The specific types of analysis discussed here conform to that

definition.

Commonly used forms of domain analysis are functional analysis, information

analysis, and dynamic analysis [Jayaramanl]. Functional and information analysis are

particularly well entrenched and have been used in structured programming for many

years.

A functional analysis of a domain is an analysis of all the activities within the scope of

the architecture which a conforming control system is supposed to be able to perform.

An information analysis of a domain is an analysis of all the information within the

scope of the architecture needed for a conforming control system to function properly.

A dynamic analysis of a domain is an analysis of the characteristics of the functions and

information in the domain which vary over time during control system operation. It

provides qualitative and quantitative information about the sequence, duration and

frequency of change in the functions and information of the domain [Jayaramanl, p.

250]. Real-time requirements would be explored in this phase of domain analysis.

3.3.2 Domain Analysis Methodologies

The triple of functional, information, and dynamic analyses is supported, for example,

by languages for expressing analysis results developed under the auspices of the United

States Air Force’s Integrated Computer-Aided Manufacturing (USAF ICAM)

program. The associated methodology specifies that functional analysis is performed

first, followed by information analysis and finally, dynamic analysis. Many alternatives

are available. A currently popular alternative is object-oriented analysis [Dewhurstl,

Chapter 6]. These techniques mandate a cyclical development cycle with function and

information decomposition taking place simultaneously and producing “objects” which

have both information and functional content. Overall analysis of the dynamics of the

system of objects created is not explicit in this methodology.

3.4 Methodology for Architectural Development

It is important for an architecture to have a set of procedures for refining and

implementing the architecture. This set of procedures is called the methodology for

architectural development for the architecture (which we will shorten to methodology

when the meaning is clear). The architectural specification at each tier of architectural

definition is related to, and used in, generation of an architectural specification for the

2. The USAF ICAM effort developed three modeling methodologies: IDEFO for functional analysis

(function modeling)[Mayerl], IDEF1 for information analysis (information modeling) [Mayer2], and

IDEF2 for dynamic analysis (simulation modeling) [Mayer3]. The ICAM effort also developed IDEF1X
[ICAM1] for data modeling, to support database design.
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other related tiers as specified in the methodology for architectural development. If an

architecture has more than two tiers of architectural definition, a methodology will be

needed to link each two adjacent tiers.

A methodology may specify top-down decomposition, bottom-up composition or some

combination of both in constructing the complete architecture. For example, if the code

or specifications for the lowest tier is available, as is often the case when dealing with

vendor-supplied equipment, an implementation-independent template for the code may

be developed. In this case, the methodology would describe how to use the template.

A methodology for producing an architectural specification at a middle tier of

architectural definition from a specification at a high tier of architectural definition

might include:

(1) performing an activity analysis

(2) using a CASE tool embodying the high-tier specification to define

application-specific tasks, sensors, actuators, etc.

A methodology for producing an architectural specification at a low tier of architectural

definition from a specification at a middle tier of architectural definition might include:

(1) rules for assignment of software modules to computing hardware

(2) rules for using software templates

(3) timing analysis

(4) performance measurement capabilities

(5) debug mechanisms

If an architecture lacks a methodology for getting between any two tiers of architectural

definition, control systems developers must devise their own methods for making the

transition.

3.5 Conformance Criteria

Conformance criteria are criteria which specify how an architectural unit at one tier of

an architecture conforms to the architectural specifications of a higher tier, or how a

process for building part of an architecture conforms to the development methodology

given by the architecture for building that part

Methods for determining conformance of a component of an architecture might

include:

(1) reading source code

(2) checking that documents which are supposed to be in computer-processable

format are in fact computer-processable

(3) observing an implementation in action

(4) devising test cases and using them to test control systems

(5) examining documentation of development activities
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4 General Architecture issues

The issues listed in this section pertain to architectures in general, not just to control

architectures. The purpose of discussing these issues is to develop a framework for

discussing and comparing reference architectures for control systems. Throughout this

section, we will assume that the definition of the architecture has the five elements of

architectural definition which were presented in Section 3.

4.1 Balance Among Elements of Architectural Definition

In the literature, it is common to read about architectures which do not have an explicit

scope or purpose, or which omit conformance criteria. Some architectures pay great

attention to defining the way in which the architecture should be applied to a real world

problem, others do not discuss this. What should be the balance of emphasis in the

architecture’s treatment of each of the five elements of architectural definition?

4.2 Scope Issues

There seem to be at least three dimensions of architecture scope: domain, life cycle, and

organizational extent. These terms are described below.

Natural language seems to be most suitable for the statement of scope and purpose.

However, it may be helpful, in addition, to use an N-dimensional space spanning some

large range and to identify a portion of the space as being within the scope of the

architecture. The selection of axes for this N-dimensional space for the classification of

architectural efforts has been one focus for both the work of the CIM-OSA project

[Joryszl] and the work of ISO 184 SC5 WG1. [ISOl]

4.2.1 Domain

For deciding whether a situation to which the architecture might be applied falls in the

domain of an architecture, the primary subject matter of the situation is not usually a

critical factor. Rather, secondary characteristics of the situation (such as real-time

performance requirements, importance of safety, and need for resource sharing, among
many others) are likely to be the determining characteristics. The classification of such

requirements would be a challenge and to date the authors have not seen such a

classification. A large issue is how context-free can an architecture, or part thereof be

made.

4.2.2 Life Cycle

The life cycle of a control system is the stages in the life of the system. One breakdown

of life cycle (with subdivisions) includes: design (conceptual design, engineering

design), manufacturing (manufacturing engineering, scheduling, production,

inspection), use (testing, operation, maintenance, logistics support), decommissioning,

and disposal. How much of the life-cycle of a control system should be covered by an

architecture?
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4.2.3 Organizational Extent

The organizational extent of an architecture is the set of related activities of an

organization covered by the architecture. MSI, for example, covers planning,

scheduling, and production. [Tingl] mentions factory planning, purchasing and

distribution, and personnel management in addition to these.

Even if an activity is not covered in detail by an architecture, it will be useful to provide

hooks from the covered activities to the uncovered ones known to be related. Having a

conceptual model which gives the interrelationships of all organizational data can form

the basis for such hooks.

4.2.4 Tiers of Architectural Definition Issues

As previously discussed, an architecture has one or more tiers of architectural

definition. A number of issues with respect to formulating these tiers must be raised.

How far from theory to implementation should a reference architecture go? How should

that continuum be divided?

Developers using architectures without clearly defined tiers of architectural definition

are likely to experience difficulties in determining implementation details and deciding

conformance. Fiala [Fialal] made the following comments about RCS, for example.

Using the decomposition-around-equipment rule, a different

architecture is obtainedfor a different set of equipment. . . . Thus, it would

be impossible to define “standard modules” and the corresponding

interfacesfor the general architecture. ...it may be possible to have a base

document that describes the general principles, and on top of this define

applications, which are specific architecturesfor specific problems.

The difficulties Fiala cites are solved by having at least two tiers of architectural

definition. The upper tier includes an architectural specification (the “base document”

Fiala mentions) and a methodology for architectural development for producing things

in the lower tier. The lower tier may initially contain nothing, or it may contain a

template for an architectural specification and/or a template for a methodology. The

upper tier methodology is applied in conjunction with the upper tier specification to

create the lower tier specification (either from scratch or by filling in the template, if

there is one) and to create the lower tier methodology if one is required (also either from

scratch or by filling in a template).

4.3 Domain Analysis Issues

An architecture reflects the domain analyses upon which it was based. There are many
choices to be made in choosing both the type of analyses performed and the

methodology of the analyses.
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4.3.1 Aspects Covered

As suggested in [Bohmsl], one dimension along which an architecture can be analyzed

is by identifying the aspects covered. This is distinct from scope. An aspect is a cross-

cutting view of an architecture from some specialized viewpoint, such as information,

communications, or control flow. The CAM-I CIM architecture is cited in [Bohmsl,

page 120] as identifying five aspects (management structure, information structure,

function/activity structure, computer systems structure, and physical structure), while

the CIM-OSA architecture is cited as selecting four aspects (function, information,

resource, and organization) - as shown on the “stepwise generation” axis in Figure 1

1

on page 223 of this report. Specifying a set of aspects from which to view the problem

domain is essential in formulating an architecture, but often they must be inferred from

the architectural specification, since they are not explicitly stated.

Existing architectures place varying amounts of emphasis on different aspects. As

previously mentioned, an architecture tends to reflect the domain analysis aspects used.

The two most widely accepted aspects are functional aspects and information aspects.

We have chosen to discuss functional, information and dynamic aspects of

architectures. As already noted, more aspects can be identified.

4.3. 1.1 Functional Aspects

The functional aspects of an architecture describe what a control system conforming to

the architecture does. A functional specification would describe what roles components

could fill in the architecture and what functions each of these roles would encompass.

For example, both MSI and RCS specify controller hierarchies, in which one controller

has the role of superior and many controllers have the role of subordinate (to the

previously defined superior). Both architectures then define functions that controllers

having these roles should perform. For example, superiors must generate commands for

subordinate controllers and subordinate controllers must generate status information.

The choice of language for expressing the results of functional analysis is an issue. It

may be stated in natural language or in a formal language. Examples of formal

languages used for this purpose are Activity Scripting Language (AcSL) [Domier2],

Structured Analysis and Design Technique (SADT)[Rossi], and IDEFO [Mayerl].

4.3. 1.2 Information Aspects

The information aspects of an architecture describe the information required for the

operation of an implementation of an architecture. Often, required information is

expressed only in data structures of the computer-executable languages (C, C++, Ada,

etc.) of the implementation. A different approach is to develop conceptual models of

the required information. A conceptual data model of a set of information is a

description of the information, always giving relationships among the members of the

set, usually including the data type of the members of the set, and often giving some of

the semantic content of the information. Conceptual models are expressed in formal

languages designed for this purpose, such as EXPRESS [Spibyl], NIAM (Nijssen

Information Analysis Methodology)[Verheijenl] and IDEF1 [Mayer2]. Some
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compilers exist which can translate a conceptual model into a specific computer

language or a database schema. For example, MSI has several EXPRESS models for

factory information which MSI requires an implementation to understand [Senehi2],

[Rayl], [Catronl], [Barkmeyer2]. These MSI models may be translated automatically

by software tools into database schemas for a specific object-oriented database system.

The existence of “domain-independent” information models for architectures is

currently a topic for debate. Some efforts (such as STEP and CIM-OSA) have

attempted to construct such models, while others confine themselves to the construction

of models for more explicitly limited domains [Barkmeyer2], [Fiala4], [Waveringl].

Another open debate is the relationship between functional and information analysis.

Some methodologies insist that these are inextricably intertwined, whereas others view

the two as separate stages of analysis.

4.3. 1.3 Dynamic Aspects.

The dynamic aspects of a control system describe how the information and function

vary over time. Examples of formal languages used for this purpose are IDEF2
[Mayer3] and LDEF3 [Menzell]. IDEF2 produces a dynamic model appropriate for

constructing simulations; IDEF3 produces a dynamic model which captures the

behavioral aspects of the system. Execution models for real-time access and update of

information are dynamic aspects of the RCS architecture. The sequence of expected

messages defined in the MSI’s control entity interface (CEI) specification is a dynamic

aspect of the MSI architecture [Wallace 1].

4.3.2 Analysis Methodology

There are many different ideas about how domain analysis should be performed. Some
methods recommend that information analysis be done first, followed by functional and

then dynamic analysis. Other methodologies start with functional analysis and then do

information analysis. Still others insist that both be done simultaneously. It is unclear

what the best methodology is.

4.4 Architectural Specification Issues

One indispensable element of architectural definition is an architectural specification.

Within the architectural specification at each tier, there are many choices to be made.

4.4.1 Granularity

An atomic unit of an architecture is an architectural unit which the architecture does not

break down further into simpler architectural units. The granularity at a tier of

architectural definition is the size of the atomic units which the architectural

specification at that tier addresses. Granularity is a characteristic of a tier of

architectural definition, not of an entire architecture. An architecture may have different

granularity at different tiers.
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What degree of granularity is best at each tier of architectural definition? In an

architecture with several tiers of architectural definition, is it reasonable to have

granularity become finer at lower tiers of architectural definition?

In an architectural specification, the atomic units generally have to interact to do the

work of the control system, and a formal specification of how they interact is required.

If the size of an atomic unit is small, the number of types of interaction becomes large

and defining them all and understanding their dynamics becomes difficult. If the size of

an atomic unit is large, the domain of the architecture is likely to be small, and the

overall architecture does not add much information above that specified by the

capability of the atomic units.

An atomic unit may either have internal subunits or may be a black box. When an

atomic unit has internal units, we will refer to these units as submodules . Submodules

are not architectural units, since the submodule has no meaning outside of the context

of the architectural unit. When an atomic unit is a black box, the architecture specifies

the functions and interfaces of the atomic unit, but does not place requirements on the

internals of the atomic unit. Implementations of the architecture are still free to

decompose atomic units further by creating submodules and specifying interfaces

between the submodules within a single atomic unit. Any submodules so defined,

however, may not interface directly with external atomic units or with submodules of

external atomic units. They must go through the interface of the atomic unit of which

they are a part. Otherwise, they are violating the architecture and will make the atomic

unit of which they are a part non-interoperable.

Atomic units may combine to form molecular units . whose interactions must also be

specified. And, possibly, molecular units may combine to form larger molecular units.

Note that any atomic unit or molecular unit that is recognized by an architecture is, by

definition, an architectural unit.

The “Processes” issue discussed in Section 4.4.33 becomes important when the

granularity of an architectural specification reaches the degree of fineness at which

processes are defined. It should be noted that, depending how “process” is defined, a

single process may contain multiple atomic units, a single process may correspond to

one atomic unit, or a single atomic unit may be composed of many processes.

4.4.2 Architecture Definition Languages

What language or languages are suitable for defining architectures?

Most architectures are defined in natural language (all the referenced papers are

available in English), but this is often vague. A degree of vagueness is appropriate at a

high tier of architectural definition. In fact, several authors explicidy endorse

vagueness. Unfortunately, it is often not clear what is vague by intent and what is vague

inadvertendy. The areas of intentional vagueness should be clearly defined. This is

possible in formal modeling languages, but just is not done in natural language.
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The elements of architectural definition are very different and therefore it is appropriate

to use different formal languages. An architectural specification (what it is) is quite

different in nature from a methodology for architectural development (how to build it),

for example, so different languages are likely to be used.

A formal modeling language intended to be used for modeling information is called an

information modeling language . Examples are EXPRESS, NIAM, and IDEF1X. These

languages are suitable for defining items of information in an architecture such as

messages, catalogs of resources, or process plans. They can be used for modeling other

parts of an architecture but were not built for that purpose. They do not make it easy to

state in an architectural specification at a high tier of architectural definition what is

expected when a lower-tier architectural specification is generated from it. This

represents an opportunity for enhancement of these languages.

When an architecture includes several tiers of architectural definition, it will be

appropriate to use different languages for the same element of architectural definition

at different tiers. For example, at the lowest tier, the architectural specification should

be given in a standard computer language (and even that might be split into source code

and object code), while at the highest tier a formal modeling language may be suitable.

The MSI project (see Section 7.2) has used the EXPRESS information modeling

language for defining the ALPS process planning language [Catron 1] and has built

tools for automatically generating a schema for a commercial database system from an

EXPRESS model. One of the authors has written an EXPRESS model for the

NASREM architecture at a high tier of architectural definition [Kramerl]. The Domier
architecture (see Section E.2) uses the IDEFO language for activity analysis and other

formal languages for other purposes.

Formal languages for expressing methodologies for architectural development (which

are action oriented) are less well developed than those for expressing architectural

specifications (which are object oriented).

Formal languages have several advantages over natural languages:

(1) formal languages are much clearer and less ambiguous;

(2) formal languages provide formal methods of extending abstract models into

restrictions of the original domain (subtyping, for example);

(3) models constructed in formal languages may be checked algorithmically for

logical completeness and syntactic correctness - for some languages,

compilers exist which will do these jobs automatically;

(4) with formal languages, compilers may be written which will produce

executable computer code or database schemas automatically from

statements in the language - many such compilers already exist.

Because of these advantages, there is a strong case that architectures should be stated

in formal languages to the extent possible, and stated in natural language to the extent

that formal languages are unable to carry the required information. It is desirable that
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natural language descriptions equivalent to formal language descriptions be written to

accompany statements in formal language, so people unfamiliar with the formal

language can understand the intent of the formal model.

4.4.3 Bottom Tier of Architectural Definition

At the lowest tier of architectural definition, the architectural specification describes the

physical hardware, software etc. The issues at this tier are many.

4.4.3. 1 Hardware

What assumptions about the computer and communications hardware on which a

control system runs is it reasonable to make in an architecture? How can assumptions

about hardware be minimized?

It is possible (easy, in fact) to design an architecture without regard to physical

implementation. The hardware available for implementing a control system, however,

has a profound effect on whether and how the architecture can be implemented.

Typically, the architecture is either violated or revised when an implementation is built,

because of hardware constraints.

4.4.3.2 Operating System

To what extent should an architecture specify the type of operating system used for

implementations?

Several levels of operating system may be used to implement a control system: the

computer operating system itself (for example UNIX), the language-specific operating

system compiled into an executable program (for example LISP or C), and possibly an

operating system that appears in source code (for example the Production Management
Operating System for the AMRF Vertical Workstation [Junl, section III.2.2.4.1]).

4.4.3.3 Processes

To what extent should an architecture define the term “process”, the interaction

between operating systems and processes, and the role of processes in

implementations?

The term “process” has been defined in different ways in different control systems in

the past. If a multitasking operating system such as UNIX is used, the operating system

probably provides the definition of process. UNIX adds confusion by providing for

“lightweight processes” as well as ordinary processes (there is no definition for

“heavyweight process”). In a non-multitasking operating system, the control system

designer can define “process” whatever way (s)he pleases. One definition of process

has been that the function calls at the top level of a “main” routine in a C-language

program for implementing a control system will be called processes. Fiala has

suggested [Fiala 1] that a software entity that implements a unit of a control system

which is not further decomposed in the architecture be called a process. If a computer

includes more than one cpu board (processor), whatever is executing on a cpu board

may be called a process.
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4.5 Methodology For Architectural Development Issues

As discussed in Section 3, the second most important element architectural definition

is a methodology for architectural development. A methodology tells how to build an

architecture and how to apply the architecture to create an implementation.

The issue of what language to use to state a methodology for architectural development

was raised in Section 4.4.2.

4.5.1 Cyclic Development

As previously discussed, there are many ways to develop an architecture: top-down

from the highest tier of architectural definition, bottom-up from the lowest tier of

architectural definition, etc. One commonly used technique is that of cyclic

development. The idea of cyclic development is that one develops an architecture,

assesses the finished product (the assessment would include implementing the

architecture), and uses the results of the assessment as feedback to a cycle of refining

the architecture. This may be done several times.

One type of cyclic development is prototyping, wherein a vertical slice through all tiers

of architectural definition is developed but only a narrow subset of the total intended

capabilities of the control system is included in the slice. This results in a working

control system with limited capabilities whose performance can be assessed. The

lessons learned from the assessment are applied in building the full system.

Many authors explicitly encourage cyclic development. This includes, for example,

[Michaloskil, page 1-1], [Quintero3, section 6], [Senehi3, section 1].

The model of an architecture described in Section 3 of this report does not have a formal

role for feedback during the development process. The formal model should be

augmented with an informal understanding that cyclic development is encouraged. An
attempt to formalize the role of feedback in the model may be worthwhile.

4.5.2 Mapping Architectural Components Onto Hardware

However many layers of architectural definition an architecture has, as long as there are

at least two, the problem of determining how to map architectural components onto

hardware will always arise in building the architectural specification at the lowest tier

of architectural definition. What rules can be used for making this assignment?

4.5.3 CASE Tools

What is the role of CASE tools in a methodology for architectural development?

There is no question that CASE (Computer-Aided Software Engineering) tools can be

built for nearly any architecture. Given our assumption that an architecture will consist

primarily of controllers arranged in a hierarchy performing pre-defined tasks, at least

two software modules for a CASE tool are desirable, one for defining tasks and one for

defining controllers and controller hierarchies. When an architecture has more than one

tier of architectural definition, it may be desirable to have more than one CASE tool.
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Many aspects of a methodology for architectural development can be built into a CASE
tool. If this is done, using the CASE tool ensures that the methodology is followed.

Because of this, it seems very desirable that CASE tools be built.

Building CASE tools alleviates the problem of there being no good formal languages

for methodologies. When a methodology is embodied in a tool which developers can

use, the tool can enforce the use of that methodology to a great extent.

4.6 Conformance Criteria Issues

The uses of conformance criteria for an architecture are discussed in Section 3. A
conformance test is a procedure that determines if conformance criteria have been met.

In the sections below, conformance testing issues are discussed.

4.6.1 Conformance Testing Methods

What sort of conformance tests could be devised?

As noted in Section 3, methods for determining conformance might include reading

source code, running documents that should be computer-processable through

computers, observing an implementation in action and comparing its behavior with the

behavior expected from a conforming implementation, devising test cases and using

them to test control systems, and requiring documentation of development activities.

Conformance testing could also include establishment of an organization to do the

testing.

CASE tools for building control systems according to an architecture might be subject

to conformance testing by devising test cases which any CASE tool should be able to

handle and checking that any CASE tool purported to be in conformance could handle

these cases. Existing CASE tools for building control systems, however, usually

embody the higher tiers of architectural definition of some specific architecture, and it

is hard to imagine a useful CASE tool which did not embody an architecture. Thus, only

if there were a widely accepted reference architecture would it be feasible to test CASE
tools this way.

4.6.2 Usefulness of Conformance Testing

How important is it that conformance criteria be included in an architecture? Who
would use conformance tests?

Conformance testing can be useful to the developers of an architecture in the context of

evaluating the architecture. To evaluate an architecture, implementations of the

architecture would have to be built. Each implementation would be a test of the

architecture, provided that the implementation conforms to the architecture.

The end user of a control system may want to be assured that a component is

conformant with a particular architecture to ensure that it can be used with previously

installed components.
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4.6.3 Testing Conformance in Development

If an architecture includes one or more methodologies for architectural development,

the development process for building an implementation should use them. Using the

methodologies is part of conforming to the architecture. How can this type of

conformance be tested?

Determining conformance to a methodology is difficult. Unless the activities in a

methodology result in lasting documents, there may be no evidence whether the

methodology was followed or not. It is usually not difficult to define documents which

must be created during development to provide such evidence, but it is difficult to

define such documents so that developers regard them as anything but a nuisance. It is

also usually not difficult - although it may be tedious - to create the required documents

even if the methodology has not been followed. This is a common tactic used by

developers.

To the extent a methodology for architectural development is embodied in a CASE tool,

conformance to a methodology may be obtained by ensuring the tool is used.

4.6.4 Conformance Classes

A conformance class is a set of architectures (or implementations) distinguished by a

combination of features at a tier of architectural definition. Different conformance

classes may have different and incompatible choices of features or may correspond to

different degrees of conformance to an architectural requirement.

In defining an architecture, there are often situations in which incompatible choices

must be made. Rather than requiring that each choice result in a different architecture,

it may be useful to define conformance classes for implementations using incompatible

choices of architectural features.

4.6.5 Allowing Non-Conformance

Once an implementation is built, it is common that the implementation offers easy

opportunities for better performance by making small changes outside the scope of the

architecture, so that the implementation is no longer fully in conformance. Typically,

easy changes of this sort have a high hidden cost, in that they compromise the

modularity of a control system, make its behavior less understandable, make it less

portable, make it harder to reuse, etc. Because such changes may have high value, it

may be useful to provide a formal method of assessing the degree of conformance. To
this end, it may be advisable to establish conformance classes which correspond to

different degrees of conformance to an architecture.

4.7 Standards Issues

An architecture should make use of established standards. For developing standards

there is an issue of suitability of the current state of the standard. The standard may not

yet have a degree of maturity which the developers of an architecture need. In this case,

it is possible to use the standard as much as possible and add the necessary
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enhancements to make it useful. When using a developing standard, there is an

additional issue ofwhen to upgrade from one version to another. Considerable cost may
be involved in doing upgrades, so it is important to evaluate the stability of the version

before switching to it. As always with the use of any new technology, the availability

of tools for development generally trails the development of the new technology. This

fact needs to be considered in deciding whether to use an emerging standard.
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5 Control Architecture Issues

In this section we raise issues which apply to control architectures, rather than all

architectures.

In order to discuss the issues, we must assume that certain architectural units are present

in a control architecture. These architectural units are: controllers, planners, schedulers,

groupings of related controllers/planners, communications systems, data systems,

resources, plans and tasks. Definitions will be given in the first subsection of this

section. The definitions given here are meant to provide a basic understanding only; a

major portion of defining a control architecture is in generating the detailed description

of architectural units at each tier of architectural definition. In issue discussions we

assume that the definition of the architectural unit is as given in that subsection. How
the architectural unit’s definition relates to the other uses of that term or what name an

architectural unit may have in a specific architecture are not issues here.

Since a primary domain of the joint architecture will be manufacturing, a number of

issues will appear which are specific to manufacturing.

We conclude the control architecture issues discussion with a section that outlines the

desirable characteristics of a control architecture.

5.1 Preliminary Definitions

The purpose of a control system is to achieve goals. A goal is a desired state of affairs.

Goals include such items as manufacturing a part, moving a robot arm to a specific

place, or navigating a vehicle from one point to another. A scheme developed to

accomplish a specific goal is termed a plan . Typically, a plan consists of a number of

discrete steps. A step is the basic unit of subdivision of the procedures section of a plan,

usually specifying that a single activity (single at some conceptual level) be carried out

(drill a hole, deliver a tray, machine a lot of parts, etc.). Often the steps are sequential,

but this is not necessarily so. Planning is the activity of making plans of any sort

—

process plans, production plans, schedules, etc. A piece of work which achieves a

specific goal - actual work, not a representation of work - is termed a task. A generic

representation of a type of work, such as moving in a straight line from one point to

another, opening a gripper, or drilling a hole, is a work element. An instruction from a

superior controller to a subordinate controller (or from a client controller to a server

controller) to carry out a task is a command.

Tasks are usually the result of a command, although an architecture may permit a

control system to have spontaneous activity. The most obvious examples of tasks

initiated by commands are the processing tasks. Other types of activity, such as fetching

data, navigating through the plan or synchronizing with other plans may also be

initiated by commands.

If a controller can carry out only one work element, the command does not need to

name it. Otherwise, it is expected that a command will name a work element and will

provide the necessary values of parameters to the work element
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The process of determining which tasks must be carried out by the control system is

termed task generation and performing these tasks is termed task execution . The

specification of the mechanism for task generation and execution forms a major portion

of a control architecture.

In a control system, a planner is an agent which generates or selects plans to accomplish

one or more goals, and a controller is the agent which directs the performance of or

performs specific tasks. Scheduling is the assignment of specific resources and times to

the steps in a plan. A scheduler is an agent which performs scheduling. Often, the

operations of scheduling and planning are combined in one function. In our discussions

however, we will not assume that this is so.

5.2 Domain

Earlier in the report, we stated that there are certain characteristics of the domain which

make a distinction in the architecture. For control systems, there are several important

characteristics of the domain in which the system operates which affect the architecture

of the system. These are:

(1) the degree to which the environment is known in advance. The greater the

environment is known in advance, the less sensory processing and adaptive

capabilities the control system must have.

(2) the degree to which the environment is structured. A highly structured

environment permits the control system to make certain assumptions, but

may force the system to be able to handle systems of constraints.

(3) the degree of variability. An environment with rapidly varying features

requires more rapid response.

5.3 Architectural Conformance

Many control architectures, since they include physical components which are not

originally designed to work with the system, must come to grips with the issue of the

extent to which components which do not conform to the architecture can be included

in the architecture. In particular, non-conformant controllers and communications

systems are frequently encountered in applications to real world situations. It is not

clear how best to deal with this.

5.4 Human Interactions with the Control System

Should the architecture specify how humans interact with the control system? Which

parts of the control system should the human be permitted to interact with? Which

aspects of the interactions between the components of a control system should the user

be permitted to alter?

Since virtually every control system has situations in which human intervention is

required, some specification of the nature of human interfaces seems appropriate. The

type of intervention may well depend on the architectural unit affected and the

assumptions of the control system.
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Interactions of humans with individual controllers are discussed in Section 5.5.9.

5.5 Controller Issues

This section discusses architecture issues pertaining to individual controllers.

5.5.1 Controller Functionality

A primary issue is: what functionality should be included in a controller? Many

architectures include planning and scheduling within the controller. Others insist that

controllers are merely dispatchers of tasks or performers of tasks upon command.

5.5.2 Internal Units

Related to the question of controller functionality is the issue of what (if any) internal

units a controller should have. This issue is also related to the architecture granularity

issue. Should there be one internal unit for each function? Which of these internal units

should be permitted to be architectural units? Which should be submodules? Which

internal units should communicate independently? What should be the form and

content of the communications among these internal units?

As examples of functional decompositions, we note that the RCS architecture

decomposes a controller into value judgment, behavior generation, world modeling,

and sensory processing and then decomposes behavior generation into job assignment,

planning, and execution. See Section 7.1 for a detailed discussion of each of these

functions. The MSI architecture considers a controller to be primarily a task execution

and task monitoring agent, with other functions being placed in separate architectural

units. See Section 7.2 for a detailed description of the functional units of MSI.

5.5.3 Operational States

The operational state of a control system or controller (or other active component of an

implementation of an architecture) is a state variable indicating its fitness for operation.

Typical values for operational state are: down, idle, ready, and active.

Should controllers have operational states? To bring a control system up, deal with

errors, etc., it seems essential to have operational states. What should they be and what

sequence should be followed during start-up and shutdown?

Any kind of reconfiguration of a controller hierarchy, other than rebuilding the

hierarchy when the control system is totally shut down, may be difficult without

operational states.

5.5.4 Execution Model Issues

An execution model is a logical view ofhow the execution of a control system is carried

out. Certain execution model issues which need to be settled in selecting hardware and

operating systems are discussed in this section.
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5.5.4. 1 Blocking vs. Non-blocking I/O

Input/output (I/O) is called “blocking” if the process doing the I/O stops while I/O

operations are being carried out. If the process does not stop, its I/O is called “non-

blocking.” Blocking I/O may make the process too slow or make its speed

unpredictable. Non-blocking I/O may allow data to be overwritten before the I/O

operation is executed and may introduce data concurrency problems.

5. 5.4.2 Interrupts vs. Cyclic Processing

This issue arises when multitasking is being used, and several tasks are running on the

same processor. In an interrupt model, the execution of a task may be suspended if an

interrupt signal is received indicating that some other task wants to execute and the

other task has higher priority. In cyclic processing, a list of tasks is maintained, and each

task is executed for a certain amount of time (or until it is finished). Then the next task

is executed for a time. The operating system keeps cycling through the list.

5.5.43 Sleeping Processes with Wake-ups

In a cyclic processing control system, if it is known that a process in an executing

system will have nothing to do for a while, the process can be “put to sleep”

temporarily, meaning that it does not execute on its usual cycle. A flag may be set to

indicate that a process is sleeping which is unset when the process should “wake up”

and resume cyclic execution.

Being able to put controllers to sleep is useful in cases where a controller has several

subordinates, only one of which can operate at a time. For example, if a robot has three

interchangeable grippers for its one wrist, it may be useful to have a separate controller

for each gripper. Rather than repeatedly starting and stopping the gripper controllers

and dynamically reconfiguring the control system when the grippers are changed, all

the gripper controllers could always be part of the control hierarchy, with only one

awake at a time.

5.5.5 Operational Modes

An operational mode is a style of operation of a controller or control system.

Operational modes might include, for example: debugging (enabled vs. disabled),

autonomy (automatic, shared control, or manual), logging (enabled vs. disabled), single

stepping (on vs. off).

Should controllers have operational modes? If so, what should they be, and what values

of each mode should be allowed? Having modes seems desirable.

5.5.6 Standard Internal Workings

Should the internal workings of the controllers in a control system follow some

standard or paradigm? For example, some versions of the RCS architecture require that

each controller be a finite state machine.

The advantages of having standard internal workings are:
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(1) controller templates at intermediate and low tiers of architectural definition

can be constructed. It may even be possible to design a controller shell so that

all controllers in a control system not at the lowest hierarchical level are the

same, and they differ only in the data that drives them.

(2) CASE tools can be constructed for building controllers.

(3) humans can understand how each controller works more easily than if each

one is unique.

(4) determining the execution time of each controller is easier than if non-

standard internals are used.

(5) standard methods for testing controllers can be developed and used.

5.5.7 Command Queues

Should control entities have the capability to put commands received in queues?

If queues are used, there are many ways in which they can be defined and managed.

First In First Out (FIFO) and Last In First Out (LIFO) are simple methods. Priority

queues are a more complex management technique. Queue management tasks can be

added to the capabilities of controllers. Managing queue size or overflow becomes

necessary if queues are used. The use of queues may make other control system

features, such as error recovery, significantly more difficult to implement.

5.5.8 Multiple Simultaneous Tasks

Should a controller have the capability to perform more than one task at a time? If so,

how should the controller determine what resources are required for each task and how
any shared resources should be allocated?

5.5.9 Human Interactions with Controllers

Should the architecture specify how humans interact with the controllers in the system?

Some specification of the nature of human interfaces seems very desirable, but the

appropriate degree of detail of the specification is not obvious. There are several sub-

issues.

5.5.9. 1 User Control of Tasks

Should the user be permitted to direct a controller to perform a specific task? If so, how
should a user introduce a task to the controller?

One way in which a user could directly hand a controller a task is to define standard

work elements for every controller above the (vendor-specific) hardware controller. A
“user_control” work element could be defined which would be executed when a user

wanted to control the subordinates of the controller. A standard interface could be

designed for this work element, which might list all the subordinates and their work
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elements. The user would select a subordinate and a work element and the interface

system would help the user construct a command from the work element. Then the

command would be sent to the subordinate.

5.5.9.2 Default Interface Operations

Should there be a default set of operations possible from the human interface?

Some set of operations may apply to every' controller in a control system. For example,

if every controller has operational modes (e.g., debug enabled/disabled, logging

enabled/disabled), it would be very useful to be able to change the operational mode

from the human interface. This set of common operations provides the candidates for

defining a set of operations possible from every human interface.

5. 5.9.3 Default Human Interface

Should a default human interface be defined?

It may be desirable to define a default human interface so that a human could interact

with every controller in a control system without having to know the specific tasks the

controller is able to perform and without having to learn every interface anew. The

default human interface would have a standard method of performing all default

operations and a method of commanding the controller to perform each of the tasks

unique to the controller.

It is not clear at what tier of architectural definition the definition of the default human

interface should be part of the reference architecture. An architectural specification at

an upper tier of architectural definition might simply require that a default interface be

defined at a lower tier.

5.5.9.4 Situation-Specific Human Interfaces

Should situation-specific human interfaces be allowed?

Many applications involve information that is best transmitted graphically to humans.

Displays tailored to such information are required. It is not clear how best to provide

for interactions between a control system and its situation-specific human interfaces.

5.6 Collections of Controllers

Within a control system, it is normally necessary for controllers to coordinate their

activities closely to achieve system goals. For example, a robot which places a part for

a milling machine must coordinate its actions with those of the milling machine and the

gripper. The necessity for coordination suggests that certain groups of controllers

should work together.

5.6. 1 Modes of Interaction

How should controllers that need to work together do so? What should be the criteria

for grouping controllers together? Should the interaction of controllers be direct (via

command-and-status), indirect (via shared data), or a combination of both?
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Two common models for organizing the interaction between controllers are the

hierarchical model and the client-server model. In the hierarchical model, each

controller supervises a number of subordinate controllers to whom it gives commands

and from whom it receives status information. In the client-server model, a controller

(denoted a server) offers a type of work which it can do for other controllers (for

example, transporting something). The other controllers in the control system (denoted

clients) can request the server controller to provide that service for them given certain

parameters. Many variations on the communications between the client and the server

are possible in this model, although the basic idea is the same. Many CIM projects have

found that a hierarchical method works well for all activities except material handling,

which performs better in a client-server model.

Is it desirable to mix hierarchical and client-server models? If so, how can this be done?

There are many ways a mixed mode might be implemented.

(1) There could be a reconfiguration queue. There would always be a strict

hierarchy, but the service controller would move from superior to superior.

(2) The service controller could have multiple simultaneous superiors.

(3) The service controller could be at a fixed place in the hierarchy, with service

requests being posted to the database. The superior of the service controller

could just keep giving “provide_service” commands to the service controller,

with parameters extracted from the database.

The scope of this report does not permit an exhaustive discussion of this issue, but the

preceding remarks give the reader an indication of the many other issues which are

spawned from this one.

5.6.2 Control of Devices and Controllers

In any control architecture, at the lowest level of control, each controllable physical

device will be controlled by a controller. However, whether a controller can control

other controllers depends on the architecture. In a partly or fully non-hierarchical

control architecture, those controllers which run in the client-server mode in the role of

server will have no superior controller, and those that run in the role of client will not

have subordinates performing the functions for which they are client. If a control

system is fully client-server, no controller will have any subordinate controllers, but

some controllers will control physical devices. In a hierarchical control system,

controllers may control either devices, other controllers, or a combination of both.

5.6.3 Synchrony and Speed

Two controllers are said to be in synchrony if there is a fixed relation in time between

their execution cycles. There are many ways of being in synchrony. Both controllers

might report to a common superior which keeps them synchronized. One controller

might execute at random times, causing the other to execute immediately afterward.

Both controllers might execute cyclically with a fixed period; for example one

controller might execute every ten seconds while the other executes every three
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seconds. If both have nominally fixed periods, phase drift may be uncontrolled (a likely

occurrence if each has its own clock) or controlled (by using the same clock, for

example). If phase drift is controlled, the phase angle may be set (usually to zero); for

example the two controllers with 10 and 3 second cycles might be forced to start at

exactly the same time every 30 seconds.

In many situations, the issue is speed, not synchrony. For example, to ensure stability,

a subordinate may need to execute at least some number of times as fast as the superior

(say ten, for example). If the subordinate executes fast with randomly varying

execution times, (so that it executes between 15 and 40 times each time the superior

executes, to continue the example), then it is not synchronous with the superior but may

meet the performance requirement through speed.

Speed and synchrony requirements may be stated independently or dependently in

many different ways.

What sort of synchrony, if any, should be required of a grouping of controllers? Should

the same type of synchrony be required for every grouping, or should different options

be allowed.

Is there a need for a system-wide clock? What is accomplished by maintaining various

levels of accuracy? How can a system-wide clock be used to maintain synchrony?

5.7 Task Specification, Generation and Execution

Tasks are one of the most important aspects of a control system. Frequently, it is the

nature and decomposition of tasks which determine the structure of a control hierarchy.

To accomplish a task using a computerized control system:

(1) The work elements required to describe the components of the task must be

defined, and the semantics of each work element must be known to the

controllers which receive commands and to the planners which plan for those

controllers which execute that work element.

(2) A plan must be made for which instances of work elements are to be carried

out and in what order. The plan may also include information on which

resources are used, the degree to which each resource is used by the task, the

duration for which the resource must be used, pointers to information needed

to carry out the plan (such as current resource availability), and

synchronization with the current plan or related plans.

(3) Commands to carry out subtasks must be given.

Issues related to tasks are discussed in the following sections.

5.7.1 Specification of Work Elements

What are the required characteristics of a work element? In what format should work

elements be specified? It is a challenge to state the semantics of a work element

unambiguously. A formal specification language that provides for representing task

semantics would be useful.
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5.7.2 Task Decomposition

How should abstract tasks be decomposed into less abstract tasks which devices are

capable of executing? Once a task has been decomposed into less abstract tasks, how

should these tasks be assigned to controllers?

The decisions on these issues are implemented in the process of defining work elements

and in deciding which controllers should be able to give commands referring to these

work elements and which controllers should be able to accept those commands.

5.7.3 Task Execution Model

An important part of an architecture is the model of the process of task generation and

execution to which the architecture subscribes. Although it is beyond the scope of this

report to discuss all models, we shall briefly describe two. In the first model, there are

a number of stages in task generation and execution. The generation of a task begins

with a generic plan. Next this plan is specialized by assigning specific resources and

specific times for task execution. Finally, during the actual execution of the plan,

current information is considered in making any choices explicitly coded into the plan.

In the second model, a plan may be developed while it is being executed, with only the

next step being known at any time.

Important sub-issues of task execution include the coordination of executing tasks, and

the method in which controllers are to receive and monitor tasks. The degree to which

the environment can be expected to remain known and stable may dictate which model

is selected.

5.7.3. 1 Command and Status Exchanges

As previously discussed, a superior or client controller tells a subordinate or server what

is to be done by sending a command. A command is a type of message. So that the

superior or client may know how the work is progressing, it is usual for the subordinate

or server to send messages back. The returned messages may specify, for example, that

the commanded task is done, is in progress, or is not being performed because some
error condition exists. We will refer to this interchange of data as the command and

status exchange and to the specification of the messages as the command-and-status

protocol

Should a control architecture specify the command and status exchange between

controllers? If so, how detailed should this specification be? Should it specify the

semantics of the exchange, the format of the exchange, the encoding of the exchange?

The nature and extent of command and status exchanges depend on the control

structure, that is, how groups of controllers function together (see Section 5.6), but

almost all existing architectures have exchanges of some sort. Most hierarchical

architectures will go into an error state if the exchanges break down. Some heterarchical

architectures [Duffie3] include exchanges but anticipate they might break down and

provide for automatic recovery.
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At the interface between a controller and a piece of physical equipment, it is normal to

have a command and status exchange regardless of the control architecture. The

controller must send the equipment commands in a format the equipment is designed to

accept, and must accept whatever status the equipment is designed to return. Often the

returned status will give the controller an indication of the physical condition of the

equipment and possibly the condition of the task which it has been given.

5.132 Coordination of Tasks

Implementations should be able to handle task coordination. How should this be

accomplished? Should the information for coordination be in the work element, in the

plan for a task (if one exists), or in some other part of the control system? Most

commonly, the controllers responsible for the performance of the task coordinate by

some form of messaging. Alternatively, for example, in some CIM architectures,

information for coordination of tasks is stored with the part which is being

manufactured.

5.8 Data

The fundamental questions which an architecture must address with respect to data are:

(1) what data should be required to be used and generated by its components,

(2) whether the specification of such data should be conceptual, logical, physical

or some combination of the three,

(3) how data may be physically distributed in a system,

(4) how distributed data should be accessed and by whom it should be accessed.

In subsequent sections, we will discuss each of these issues.

5.8.1 Required Data

All control architectures have some types of data that are required by the control

system. An architecture can specify this data on one or all of three levels of data

abstraction. The most abstract level is the conceptual level. Data specified at this level

describes the idea which the data represents. For example, an architecture may specify

that a machine tool should have a physical location, without specifying the coordinates

in which this location is given or the physical location of the data storage. At the next

level is the logical level of definition. To continue the previous example, a machine tool

could be said to have a property called “location” corresponding to the conceptual

notion of location. At the physical level, the implementation of the representation of the

machine tool must be fully specified with a coordinate system for the location data, the

fields of the data structure or database entry describing the machine tool location, and

the physical location of the database or database server. The degree of data abstraction

at which an architecture specifies data may vary at each tier of architectural definition

and is related to the granularity of that tier.
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Required data can be either persistent data (data stored on a permanent medium such

as files or databases) or non-persistent data (data stored in memory). A decision must

be made as to whether to specify the persistence of some or all data. The persistence

issue is independent of the data access issue, which will be discussed later.

There are several important types of information which are specified in a control

architecture. We will discuss two of them here, plans and resources, and discuss other

categories later as they arise in the discussion of specific architectures.

5.8.1. 1 Plans

In existing control architectures, the characteristics of plans vary extremely widely, and

are related to the concept of planning and control which the architecture has and to the

structure of the controller which the architecture requires. One architecture may view

planning as a single-stage endeavor while another architecture may have separate

stages of planning. With a single-stage view of planning (as taken by RCS, for

example), the term “plan” or “process plan” is sufficient. A process plan is a

specification of the activities (possibly including alternatives) necessary to reach some

goal. With a multi-stage view, it is useful to have a different term for the plan at each

stage. In a three-stage view of planning (the one taken by MSI and described in Section

7.2.2. 1.1, for example) the three plan types might be “process plan”, “production

managed plan”, and “production plan”. In the three-stage view, a process plan is more

narrowly defined; for example, it may be required to identify resources in generic

terms.

Typically, commands issued by controllers are generated by combining current

information about the system (e.g. resource status) with the information generated by

reading plans.

What types of plans should be included in the architecture? What types of information

should a plan contain? What plan format(s) should be used?

5.8. 1.2 Resource Definition

A resource definition is a description of a resource, usually given in a formal

information modeling language. Should the architecture include formal resource

definitions? In the definitions of resources in the architecture, are the ways in which the

resources are used specified? Should dynamic characteristics of the resource be

included with its description? Are there types of resources which share characteristics?

If so, how should resources be categorized.

Some architectures, MSI for example, include a formal definition of resources. There

are several general categories of resources: for example, consumable resources

(machine fluid, solder, etc.), logical resources (e.g. controllers) and permanent

resources (lathe, drill press, etc.). The resource definitions within these categories

describe classes of resources which have common characteristics. This can be referred

to as a catalog of resources. In addition, MSI specifies that the factory under

consideration describe the actual resources which are on hand and their status.

Controllers themselves are considered resources.
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Depending on the nature of planning in a control system, resource classes or actual

resources may be specified in plans.

It is recommended that a reference architecture include some amount of formal resource

definition. What information should be included in a resource definition and what

language is used for resource definition are important issues not addressed in depth in

this report.

5.8.2 Data Handling Architecture

The data handling architecture specifies how data is accessed and which architectural

units may access which data. In this discussion, the persistence of data is not

assumed—data access mechanisms are similar in concept for persistent and non-

persistent data.

5.8.2. 1 Data Access Mechanisms

In any system, data may be stored in a single place or be physically distributed in

several places throughout the system. The access of data which is stored in one place is

straightforward; the data is either local (on the same physical machine) or it is accessed

through the communications system for the physical machines.

If data is distributed, there are two possibilities: an implementation can be required to

specify the physical location when accessing data, or there is a server system for the

data which an implementation contacts to access the data without knowing its physical

location. A well-known example of a server system which can hide the location of data

files from an implementation is NFS [Libes2]. Systems of this type also exist for

databases (e.g. IMDAS - [Barkmeyerl]), but these are less well-developed and, at

present, too slow for real-time use. An example of a server system for non-persistent

data is NIST’s Common Memory [Libesl], [Rybczynskil]. Depending on the server,

the implementation may need to have a method of determining that the data which it

currently has is up-to-date. This issue is a distributed system problem and a full

discussion of it is beyond the scope of this report.

How much or how little the architecture leaves the organization and access mechanism

of data to the implementation is an important architecture issue.

5. 8.2.2 Data Access Permissions

There seems to be universal agreement that any component can have a certain amount

of private data. Private data is usually information which is irrelevant to other

components. It is an architectural choice whether to specify the private data for

components and whether to specify its mode of access.

Some data will have to be shared among different components. This data will typically

be distributed and will require one of the access schemes discussed in the previous

section. If the architecture permits a component to keep local copies of shared data, the

architecture should also specify whose responsibility it is to ensure consistency of this
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data with the shared copy. Whether the architecture permits more than one mode of

access for shared data is an additional issue. In some architectures, access is required to

be through the data access service, in others, multiple access mechanisms are permitted.

Potentially each item of data would have a scope. A sample set of scopes would be:

local to function, local to process, local to group of processes, global in network. The

method ofimplementing a scope would be determined when a system is configured. For

example, a variable local to a group of processes sharing a memory board might be

implemented by establishing a memory board address for the variable and having each

process use the address. If a variable were used by processes running on physically

separate hardware, the variable might be implemented using the communications

system.

5.9 Planning, Scheduling and Resource Allocation

A key issue for control systems, which is very sensitive to the environment in which

they operate, is the way in which the control system plans, schedules and allocates

resources. In some domains, such as manufacturing, the construction of long-range

schedules and the allocation of resources is required. In other domains, such as the

navigation of autonomous vehicles, the environment is not known in advance and

scheduling and resource allocation must be done in real time, as information about the

environment is processed. The following sections point out important architecture

issues concerning planning, scheduling and resource allocation. Some issues are more

appropriate to some domains than others.

5.9.1 Process Planning

To what extent should the architecture require plans to be generated in advance, as

opposed to deciding what to do in real time? If plans are generated in advance of their

use, should the resource allocation for the plans and the scheduling of the plans be done

at the same time as the plan generation, or can these activities be performed later using

a skeletal plan which refers to resource classes? Can these modes be mixed effectively?

If so, what requirements does this place on the control structure?

5.9.2 Scheduling

How should scheduling be handled? There is a wide spectrum of possibilities for

scheduling. These possibilities range from operating with no schedule, in which the

order of events and what gets done is a by-product of control system operation, to full

scheduling, where detailed activities are planned for each controller at a scheduled

time, so that all controllers not at the lowest hierarchical level are merely dispatching

commands generated from a plan.

What aspects of the architecture must be adjusted for control systems which use

scheduling? At least, such a control system must include a scheduler, and control

information must include schedule information. Such a system would need information

on the availability of resources as well, if the architecture has availability classes for

resources and the resources are used in plans.
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The type of scheduling required for an application may vary widely. For example:

A transfer line (or flow shop) is necessarily sequential, so little scheduling is required

for the controllers of the line.

A shop in which there is no resource contention (for example, if the shop is

underutilized, or if all the machines are identical, all jobs have equal priority, and each

job can be done on one machine) may not need scheduling. Everything is processed as

fast as possible as soon as it arrives.

[Biemansl] makes the point that a group of steps that must be executed sequentially

may be treated as a unit for scheduling purposes.

In a manufacturing system, in addition to the scheduling of control tasks, other items

must be scheduled. For example, maintenance tasks and material handling tasks must

also be accounted for. A manufacturing architecture must specify whether these non-

control tasks are scheduled or handled by other means.

5.9.3 Resource Allocation

Some control architectures need to provide for resource allocation : assigning resources

(temporarily or permanently) for some specific purpose. Resource allocation is critical

in control systems in which resources must be shared, such as manufacturing systems3 .

In the case of control systems which are reconfigured periodically (dynamically or

when shut down), controllers and the equipment they control are also treated as

resources. With respect to processors and processes, there are four additional cases of

resource allocation that may be considered (given here in order of increasing

dynamics):

( 1 ) Allocating processes to processors in a control system where processes do not

move from processor to processor. In the rest of this report we treat this as a

methodology for architectural development issue, not a resource allocation

issue, since the problem is what design rules to adopt for making the

allocation. This issue was introduced in Section 4.5.2, “Mapping

Architectural Components Onto Hardware”.

(2) Allocating processes to processors in a control system which is reconfigured

periodically (dynamically or when shut down), and reassigns processes to

processors during reconfiguration.

(3) Allocating processing time to various processes when a processor has to

execute several processes which do not move from processor to processor.

This is an intensively researched operating system issue in computer science

and many commercial computer systems deal with it.

(4) Allocating a processor for a certain amount of time to a process in a control

3. A number of other issues specific to the manufacturing domain must be dealt with by the architecture.

Among these are: product specification, order processing and tracking, part and lot tracking, lot sizing (the

designation of the number of parts which will be manufactured at one time), and material handling.
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system where there are several processes and several processors, and the

processes can move from processor to processor. This is a current research

issue in parallel processing.

5.10 Communications

To what extent should the architecture deal with communications? Should the

architecture specify the communications paradigm, the communications

implementation? Should one communications scheme be required for all portions of the

architecture, or can multiple schemes be used?

Three aspects of the communications paradigm which affect the architecture are: the

number of communications entities which may receive a message transmitted by a

communications entity at one time, whether a message is guaranteed to arrive at its

destination by the network software, and the timeliness of message delivery by the

communications system.

Regarding the first aspect, there are three possibilities. A communications system can

permit a communications entity to send a given message: to only one other

communications entity (termed point to point communications), to more than one

known communications entity (termed multicast communications), or to more than one

unknown communications entity (termed broadcast communications). From an

architecture viewpoint, the critical distinction is that point to point and multicast

communications require a communications entity to know which other entity or entities

it is sending a message to, whereas broadcast communications permits the sending of

messages to other communications entities whose identities are unknown to the sender.

Message delivery may be either guaranteed or non-guaranteed. The architectural

impact of this is that, if non-guaranteed message delivery is used, the implementation

is responsible for ensuring message transmission or for compensating for potential

message loss.

Open System Interconnection (OSI) communications systems use point to point

communications with guaranteed message delivery. This paradigm frees the user from

retransmissions to ensure that a message is received, but forces the sender of a message

to identify the receiving party for the message. An alternative is NIST’s Common
Memory [Libesl], [Rybczynskil]. This paradigm has both buffered and non-buffered

variants. The buffered version prevents immediate over-writing of messages but does

not guarantee delivery. The NIST Common Memory paradigm has the advantage that

any number of communications entities can have access to the same shared

information, without the message sender knowing in advance who the recipients are.

The timeliness of message delivery by the communications system is an important

consideration for real-time control systems. Communications systems can be designed

with this in mind, and there are standard networking schemes which support data

transmission for real-time control systems.

38



Feasibility Study: Reference Architecture

5.11 Checks and Safeguards

To what extent should checks and safeguards be built into an architecture?

Checks and safeguards are useful to provide reliability, fault tolerance, and error

recovery.

Clearly, control systems which are dangerous when working improperly (airplane

autopilots and nuclear reactor operation systems, for example) need safeguards. Are the

safeguards outside the basic architecture or an integral part of it?

MSI requires a guardian interface for each controller. The guardian interface functions

as the human emergency override and intervention point. The existence of this interface

is mandated by the architecture.

Some architectures, the Domier architecture, for example, distinguish between

“normal” error (such as position error for a machine tool axis, which is fed to the servo

law of the controller for the axis) and abnormal errors (such as when a machine tool axis

trips its overtravel switch).

5.12 Error Recovery

In addition to error checking which is required for safety reasons, a control system

needs to have mechanism(s) for identifying and correcting error conditions. To what

extent is the ability to recover from errors in each major subsystem (e.g.

communications, groups of controllers, data system) built into the architecture? What
mechanisms does the architecture permit or require for handling cross-subsystem

errors? What feedback mechanisms for fine tuning control system operation does the

architecture permit?

5.13 Desirable Characteristics of a Control Architecture

What are the desirable characteristics of a reference architecture, and how can a

reference architecture be defined to have these characteristics? For each characteristic,

what is it about the architecture that provides for the characteristic?

There is general agreement in the literature on what the desirable characteristics are.

The subsections below present these desirable characteristics. Some of the

characteristics (e.g., understandability) can be measured on an entire architecture, while

others (e.g., speed of performance) can only be measured on implementations of the

architecture. Even where only the implementation can be measured, the level of

performance may be indicative of the quality of the architecture, not just its

implementation.

Achieving one desirable characteristic may help or hinder in achieving another. Some
of the characteristics are synergistic, others antagonistic. Low cost, for example, goes

well with low complexity and easy modifiability. High speed, on the other hand, is

likely to conflict with low cost, understandability, low complexity, and several others.

Determining what it is about the architecture that provides for any given characteristic

may be easy (modularity leads to ease of modifiability, for example) or hard.
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5.13.1 High Quality

The quality of the architecture should be high.

This is an inescapably vague idea which should, nevertheless, be stated. Many other

subsections in this section describe components of quality. Other components of quality

might also be identified, and a method of integrating them to produce a single measure

of quality might be devised.

5.13.2 Low Cost

The cost of implementing an architecture should be low for a given level of

performance.

The method of keeping costs down varies according to the environment. In a research

environment, the main cost is usually the salaries of the researchers, and it is commonly

less expensive to buy more computing hardware to improve control system

performance than it is to devote a lot of effort to optimizing performance within existing

hardware. In commercial control systems it is usually more cost effective to optimize

hardware performance and make efficient use of computing resources.

5.13.3 Modularity

Aspects of a control system (data flow, control flow, communications, etc.) should be

kept as separate as possible, and each aspect should be divided into encapsulated parts,

to the extent possible.

Increasing modularity generally helps achieve many other desirable features.

5.13.4 Low or Manageable Complexity

The less complex an architecture, the better. Many domains, however, require complex

functionality from the architecture. Usually, the most that can be asked is that the

architecture provide a good method of managing this complexity.

5. 1 3.5 Fault Tolerance

A control system is fault tolerant if it will continue to work when one or more of its

components is not working.

Fault tolerance may be strong or weak. A strongly fault tolerant system will continue to

work at the same level of performance when there are faults. A weakly fault-tolerant

system will have performance degradation proportional to the number of faults in the

system. Weak fault tolerance is often called “graceful degradation”.

5. 1 3.6 Error Detection and Recovery

It should be possible to be informed of problems quickly, and if something goes wrong,

it should be possible to get the control system working again quickly.
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5.13.7 Extensibility

It should be easy to add new components or capabilities to the control system without

having to make major changes to the existing components and capabilities.

5.13.8

5.13.9

5.13.10

5.13.11

Speed and Response Time

Implementations should perform fast enough to meet the requirements of the domain.

Control systems which must keep pace with events in the environment are called real-

time systems. Systems in which response must be generated within a fixed time interval

are called hard real-time systems. Real-time systems which are not hard real-time

systems are refered to as soft real-time systems. Control systems in which the rate at

which events occur in the environment does not matter are not called real-time but may
still have speed or response time requirements.

Modifiability

It should be easy to change existing components of the control system. The foremost

method of achieving this is modularity. Having adequate documentation, using

standard languages, and keeping complexity down also contribute to ease of

modifiability.

Portability

It should be feasible (preferably easy) to transport an implementation of an architecture

from one computing platform to another. An obvious method of helping provide

portability is to use a standard high-level computer language for source code in the

implementation. Compilers for the language will be available for many computing

platforms. Portability may be limited by the implementation’s requirements on the

operating system.

Predictability

It should be possible to predict what the control system will do. It is necessary both to

be able to predict what will happen given a fully specified environment and set of inputs

and to be able to predict limits on control system behavior given any possible inputs in

any environment in which the control system is intended to work.

The need for this requirement is dependent upon the domain. For control systems in

which failure is dangerous, predictability is very important. In domains where multiple

“correct” choices are possible given the same set of inputs, this requirement may not be

as stringent.

5.13.12 Reconfigurability

A control architecture should include methods for configuring control hierarchies or

networks when the control system is fully idle.
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5 . 13.13

5 . 13.14

5 . 13.15

5 . 13.16

Dynamic reconfiguration (modifying the control hierarchy while the control system is

working) is very desirable for error recovery and fault tolerance; it should be possible

to replace a defective controller without shutting everything down.

Dynamic reconfiguration is very desirable in some situations, even if nothing goes

wrong. For example, if a shop gets a wide mix of parts, it would be desirable to

reconfigure cells so that a cell can handle all operations for a part it is trying to

manufacture. In implementations for use in space missions, it would be advantageous

to be able to reassign robots to different working groups smoothly in mid-mission.

Reliability

Implementations should be reliable. A control system is reliable if it works as intended

with an acceptable failure rate - what is acceptable is up to the system designers and

users.

The reliability of software correlates positively with its predictability. Both can be

achieved, at least on the software module level, by testing each module with every

combination of allowable inputs and verifying that the output is correct.

Reusability of Software

It should be feasible to reuse software from one implementation of an architecture to

another, since the new implementation should have the same controllers and tasks as

the old one.

Understandability

It should be possible for a human to understand the architecture and implementations

of the architecture. For very large, complex control systems this is critical. Most large

systems are developed by teams of people who require a common understanding of the

system to do their work correctly.

Compatibility with Existing and Emerging Standards

An architecture should conform to existing, well-established standards, where
appropriate. With respect to evolving standards, an architecture should, depending

upon the maturity of the standard, require their use insofar as it is feasible.
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6 Other Control Architectures

In preparing this report, it was necessary to understand previous work which has been

performed by both divisions (RSD and FASD) and in the general community concerned

with control architectures. Although the authors of this report did not attempt an

exhaustive literature search, many papers were analyzed. In this section we review a

number of control architectures that have been described in the literature.

A brief description of each architecture is given, highlighting those aspects of the

architecture to which the architecture pays the most attention. Two of the architectures

described in this section, CIM-OSA and Domier, are reviewed in more depth in

Appendix E. The RCS and MSI architectures are not covered in this section, but are

discussed in detail in Section 7 and Appendix C.

Some papers contain special features which may interest the reader. These are:

[Diltsl] provides a classification and comparison of types of architectures.

[Auslanderl] presents principles of real-time control software.

[Domierl], [Lumia2], [Mini], [VanHarenl] have performed comparisons of specific

proposed architectures.

Several papers include glossaries of terms related to architectures: [Albus?],

[Domier2], [Leakel], [Martini]
4

, [Quintero2], [Senehil], [Senehi2], and [Wallacel].

6.1 Introduction

All the architectures which we have reviewed address some of the elements of

architectural definition. Not one of the architectures which we reviewed includes all of

the elements of architectural definition in its definition. Moreover, each architecture

places emphasis on a unique and limited subset of the issues identified in Section 4 and

Section 5 of this report. For example, the Domier architecture, but not most others,

includes requirements definition; the RCS, Domier, CIM-OSA, and other architectures

include methodologies for architectural development at various levels of formality; the

MSI architecture includes general criteria for determining conformance. This lack of

uniformity makes architectures difficult to compare, as the data for performing the

comparison is often lacking.

A traditional approach to solving this difficulty is to devise a classification scheme

which permits comparable architectures to be grouped together. This section describes

two classification schemes found in the literature, and proposes a simple classification

scheme which will be used to organize the architectures reviewed in this report.

4. [Martin2] through [Martin6] also have glossaries, but they are subsumed by the glossary of [Martini].
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6.1.1 Classifying Architectures

A classification scheme requires that dimensions of a control architecture be identified

and that any dependencies among these dimensions be made clear. There is enormous

variety in the choices of dimension which can be made. The authors present two

classification schemes which proved useful in the analysis of architectures performed

in this report.

In [Bohmsl] nine dimensions for modeling Computer Integrated Manufacturing

systems are identified.

(1) modeling level (reality, models of reality, models of models)

(2) language level (level of modeling language used)

(3) aspect (set of views, e.g. functions, information, resources)

(4) composition (global to detailed)

(5) scope (type of activity)

(6) representation (modeling language used)

(7) product life cycle (design, production, maintenance, etc.)

(8) actuality (to be vs. as is)

(9) specification level (generic to fixed - how much choice left)

Section 4 of [Bohmsl] proposes decompositions of each of the nine dimensions into

points or regions. For example, the modeling level dimension has three points: CEM
Framework, CIM Models, CIM in Practise.

In section 2 of [Biemansl] a second, very different, set of dimensions is identified.

They are not explicitly called dimensions in the paper.

(1) flexibility

(2) precision of architecture definitions

(3) generality of a CIM architecture

(4) level of architectural definition of a CIM architecture
5

The two sets of dimensions just described are interesting and reveal the difficulty of

establishing a comprehensive method of characterizing architectures. Each of the

dimensions may be of interest in some situations. Most of the dimensions are useful in

describing each tier of architectural definition, not entire architectures. For example, a

single architecture may encompass several tiers of architectural definition and use

several different languages in its specification.

Some programming languages, such as C++, are object-oriented, in that programming

is done by defining classes and instances of objects, which have attributes and

functional behaviors. “Object-oriented” is not descriptive of a type of architecture. Any

5. In this report, tier of architectural definition is used instead.
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of the types of architectures described here can be implemented in an object-oriented

language. Heterarchical architectures, however, are particularly suitable for

implementation in an object-oriented language.

Since no method of classification is totally satisfactory, this paper will not attempt a

detailed classification. Using the control method as the first preliminary dimension.

Section 6.2 discusses architectures in which control is the aspect of the architecture

most heavily emphasized. Section 6.3 discusses architectures in which control is a

minor aspect. Table gives a summary of architectures reviewed for this report which

are not discussed in detail.
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Table 2: Miscellaneous Architectures

Citation Description

[Biemans2] Presents a hierarchical controller-based reference model for

manufacturing planning and control.

[Boykin 1] Presents a very brief overview of the CAM-I CIM architecture.

[ISOl] Presents a reference model of shop floor production.

[Juddl] Describes a method of manufacturing system (workstations, cells, or

individual lines) design using “executable” functional specifications.

This might be viewed as an analysis-based approach.

[Litt 1 ] ,
[Jung 1 ] Presents the RAMP (rapid acquisition of manufactured parts) CIM

architecture [Littl], and discusses the implementation of the RAMP
architecture at an established site [Jungl],

[Norcrossl] Discusses a controller which handles multiple simultaneous tasks and

coordinates them via resource allocation.

[Skevingtonl] Describes an architecture that includes a “metadatabase” and a

“metaoperating system.” It is said to be suitable for manufacturing in

small shops.

[Spectorl] Presents a “supervenience” architecture for controlling autonomous

robots. The architecture provides for on-line process planning in a

dynamic environment.

[Wendorfl] Reports on a family of controllers developed in a commercial

environment, one of which is a workstation controller intended to be

used in a hierarchical control system with a cell controller as its superior

and automation modules as subordinates. The workstation controller

uses process plans (called “recipes” in the paper) and handles scheduling

and resource allocation and contention. It can do multiple simultaneous

tasks.

[Weston 1] Describes a system named AUTOMAIL, which is called “a flexible

integration shell” for CEM and provides services for communications,

information access, and task execution.

6.2 Architectures Emphasizing Control Aspects

Although there is no universally agreed on categorization, four commonly discussed

types of control architecture are: centralized, hierarchical, modified hierarchical, and

heterarchical [Diltsl]. We have given disproportionate representation to hierarchical
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architectures in this report (in comparison to the universe of papers on control systems

and architectures) because MSI and RCS are hierarchical, and we intend to propose a

hierarchical architecture.

In this section we cite advantages and disadvantages of the four types of control

architecture. These are generalizations, not hard truths. The advantages and

disadvantages cited are in comparison to the other types.

6.2.1 Centralized Control Architectures

The idea of a centralized control architecture is that a single controller running on a

single computer controls everything directly. Centralized controllers are discussed in

[Diltsl]. Usually, a centralized control architecture includes a centralized data

repository with a single data access protocol.

Advantages of a centralized control architecture include:

( 1 ) no need for communications among controllers (although communications to

device drivers is still needed),

(2) ease of data handling,

(3) less difficulty with global optimization,

(4) the several advantages of having only one program to worry about (only one

place to look for bugs, one status interface, one control interface etc.).

Disadvantages of a centralized control architecture include the following. The

disadvantages tend to be catastrophic:

( 1 ) vulnerability to failure.

If one little thing goes wrong, the entire system is likely to stop,

(2) graceless performance degradation,

Typically, if something goes wrong the system does not just work a little more

slowly; it does not work at all.

(3) hard to extend.

If the system grows, when the computational demands become too large for

the host computer, there may be no way to extend it.

(4) hard to program.

The program that is the heart of the controller becomes complex, prone to

bugs, and hard to maintain.

[Johnson2] describes a centralized control system named CIMPLICITY, a product

offering from GE Fanuc.

[Maimonl] presents a centralized controller for a flexible manufacturing system which

is decomposed internally into a scheduler, a process sequencer, a dynamic resource

allocator, and run-time services. It is served by several databases and issues commands
to a number of machine controllers. The internal decomposition is described as a

hierarchical decomposition by the author.
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6.2.2 Hierarchical Control Architectures

The hallmark of a hierarchical control architecture is that controllers are arranged in a

hierarchy in which controllers interact through a command-and-status protocol. While

a strictly hierarchical control system explicitly disallows the exchange of commands

among peer controllers, it may permit peer controllers to share information by any

number of mechanisms (e.g. through information shared in a database.) Often, the

command structure is a simple type of hierarchy, a tree, in which each controller has

one superior and zero to many subordinates. Hierarchical systems can be run on a single

computer with a single processor, on a single computer with several processors, or on

several different computers.

Most of the control architectures described in the papers reviewed for this report are

hierarchical control architectures.

Advantages of a hierarchical control architecture include:

(1) natural modularity.

Each controller can be treated as a software module, facilitating incremental

development, malting the system software easier to understand and maintain,

and allowing the use of templates for controller code.

(2) fairly easy extensibility.

The system may be extended by adding controllers and computers and

changing the hierarchy.

(3) somewhat graceful degradation.

If something goes wrong during system operation, in a well-designed

hierarchical system, only one branch of the hierarchy needs to stop.

(4) allowance for different frequencies of operation of controllers on different

levels of the hierarchy.

Typically, controllers at lower levels of the control hierarchy have higher

frequencies than those at higher ones.

Disadvantages include:

( 1 ) need for communications among controllers,

Centralized controllers do not need such communications.

(2) difficulty integrating system-wide service functions, such as material

handling.

Heterarchical control (to be discussed shortly) does not have this problem.

(3) difficulty in debugging.

Errors may occur in the interactions between controllers. When control

programs are distributed among processes or computers, standard debuggers,

which are effective with centralized control, are not likely to help much in

finding such errors.

Several hierarchical control architectures will be discussed in the following sections.
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6.2.2. 1 AMRF (Automated Manufacturing Research Facility)

The AMRF architecture was developed at NIST. As discussed earlier in this report, it

was a predecessor of both RCS and MSI. We have included only a small sample

[Jackson 1], [Jones2], and [JonesS] of the several dozen papers written about the AMRF
in the bibliography of this report. The lineage ofRCS at NIST predates even the AMRF,
a five-level hierarchical control system with sensory feedback for a robot having been

described in [Barberal] in 1977.

The AMRF architecture includes five hierarchical levels: facility, shop, cell,

workstation, and equipment. Material handling is positioned as a workstation under

cell. Tasks are decomposed along control hierarchy lines. Controllers are resident on

several different computers and communicated via standard interfaces. Process

planning is done off-line for all controllers. The IMDAS (Integrated Manufacturing

Data Administration System) data system [Barkmeyerl] and a network

communications system with NIST’s Common Memory [Libesl] are used.

Scheduling and resource allocation are not handled.

6.2.2.2 Domier

Under contracts from the European Space Agency, the Domier firm produced several

papers [Dornierl], [Domier2], and others concerning control architectures. [Domier2]

proposes a reference architecture for European space automation and robotics control

systems. The architecture is intended to be suitable for at least robot systems, surface

roving vehicles, and dedicated automation equipment. We are not aware of any

implementations of the Domier architecture.

The Domier architecture describes tiers of architectural definition explicitly (in other

terms) and has four of them.

A three layer control hierarchy is proposed. No rationale is offered for why three layers

are suitable.

Each controller has three major modules: nominal feedback functions, forward control

functions, and non-nominal feedback functions. No rationale is offered for the

decomposition of a controller into three modules.

Of all the architectures examined for this report, the Domier architecture provides the

most formalized methodology for architectural development. The methodology uses

the “structured analysis and design technique” (SADT).

More details on the Domier architecture are provided in Appendix E.

6.2.2.3 GISC (Generic Intelligent System Control)

GISC is being developed by the Department of Energy. It is not yet a fully defined

architecture. It includes a set of software systems called GISC-Kit contributed by

variousDOE laboratories. As described in [Griesmeyerl],
“GISC is an approach to the

construction of controllers for complex robotic systems . . . GISC-Kit is the library of
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software modules that the designer ofa robot system controller can accessfor an actual

implementation”. The primary domain intended of GISC is robotics for cleaning up

hazardous waste at DOE sites, but the architecture itself is not limited to that.

One of the components of the GISC-Kit is a system called General Interface for

Supervisor and Subsystem (GENISAS) [Griesmeyer2], which is a communications and

event-handling shell service for supporting a command-and-status protocol between

superiors and subordinates in a hierarchical control system. The shell knows about

various types of command and status messages, but does not know the semantics of the

messages (e.g., in the case of a command, it does not know what the superior is telling

the subordinate to do).

6.2.2.4 Jones

Albert Jones of NIST has written extensively on CIM architectures, starting with the

AMRF in [Jones2] and [Jones5] and continuing with an examination of architecture

issues in [Jones 1]. In recent years, he (with several colleagues) has proposed an

architecture in a series ofpapers [Jones3], [Jones4], [Davis 1], [Joshil], which identifies

the functions of controllers as adaptation, optimization, and regulation. The controllers

are arranged hierarchically. “Adaptation is responsible for generating and updating

plansfor executing assigned tasks. Optimization is responsiblefor evaluating proposed

plans, and generating and updating schedules. Regulation is responsible for

interfacing with subordinates, monitoring execution of assigned tasks” [Jones4, page

63].

6.2.3 Modified Hierarchical Control Architectures

Systems which serve many different controllers in different parts of the control

hierarchy (such as material handling systems, which deliver part blanks to

workstations) pose special challenges for a hierarchical architecture. Modifying a

hierarchical control architecture by implementing these controlled services as

independent agents without a superior is typical. This is what we mean by a modified

hierarchical control architecture.

The advantages and disadvantages of a modified hierarchical control architecture are

similar to the unmodified version, except that the disadvantage of not handling system-

wide services well is removed, and a disadvantage of having system performance be

less predictable is added.

6.2.4 Heterarchical Control Architectures

In a pure heterarchical control architecture . each controller has no superior and no

subordinates
6

. Controllers interact by issuing requests for bids, making bids, and

entering into contracts to do work.

Heterarchical architectures typically use distributed databases - each controller has its

own database - but that is not a requirement.

6. Device drivers for equipment are not regarded as subordinates.
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Advantages of a heterarchical control architecture include:

(1) strong natural modularity.

Each controller can be treated as a software module.

(2) very easy extensibility,

The system may be extended by adding controllers and computers.

(3) graceful degradation.

If something goes wrong with a controller during system operation, only the

controller that has the problem needs to stop.

(4) allowance for different time scales.

Disadvantages include:

(1) need for heavy communications among controllers,

This is to handle all the soliciting, bidding, and contracting.

(2) very hard to predict system behavior.

Predicting what a heterarchical architecture will do (which controllers will do

which tasks and when a task will be done, for example) is typically difficult.

It is often not even clear if the solicit-bid-contract procedure will reach

closure.

(3) very hard to optimize system behavior globally.

[Diltsl] discusses heterarchical architectures in the context of a comparison of types of

architectures and seems enthusiastic about them. [Hatvanyl], [Johnson 1], [Shawl],

[Tingl], and [Vamosl] espouse heterarchical architectures.

A dispassionate analysis of the performance of heterarchical architectures is offered in

[Upton 1].

A heterarchical architecture is not necessarily focused on controllers. The focus may be

on the item being worked on, rather than on the item that does the work. The domain

for which this seems most appropriate is discrete parts manufacturing. The method of

interaction employed is to make “intelligent parts” which know what needs to be done

to them and can negotiate with controllers and enter into contracts to have it done. The

controllers with which an intelligent part deals must be independent agents (able to

negotiate and enter into contracts).

Neil Duffle (with co-authors) has published several papers about heterarchical

architectures with intelligent parts, including [Duffiel], [Duffie2], and [Duffie3]. The

papers report implementations of heterarchical architectures for discrete parts

manufacturing in a research environment.

A third variety of heterarchical control is called the “data flow” model, although

“claiming” model might be a better description. In this model, controllers are active

agents, but there is no bidding. A special component. Module 0, is responsible for

keeping track of what work has been done on a set of tasks. Module 0 broadcasts the

work to be done, and each controller that can do a piece of work puts it on its queue of
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things to do. When the piece of work comes to the top of a controller’s queue, the

controller claims the piece of work and works on it; all other controllers remove it from

their queues.

[Tingl] discusses controller-driven, part-driven, and data flow models.

6.2.5 Other Architectures Emphasizing Control

6.2.5. 1 NGC (Next Generation Controller)

Under contract with the NGC program of the United States Air Force, the Martin

Marietta Company developed a Specification for an Open System Architecture

Standard (SOSAS). SOSAS is documented in six draft volumes [Martini] through

[Martin6] totaling about 1000 pages.

The SOSAS architecture is the most comprehensive architecture which was reviewed

for this report, but it is very uneven. Most curiously, although control is emphasized

throughout, there is no explicit commitment to any of the four kinds of control

described above. The services which are provided lend themselves to a hierarchical or

modified hierarchical architecture and not to a heterarchical architecture. There is no

explicit support, in particular, for controllers requesting bids, making bids, or entering

into contracts. Neither, on the other hand, is there any support for modeling a controller

hierarchy.

SOSAS defines two distinct categories of architectural units: services and applications.

Services are defined in the first volume of the set and include operating system (called

“platform”), communications, data management, presentation management, task

management, geometric modeling, and basic I/O. Operating system and basic I/O are

dealt with on less than a page each by referencing POSIX and OBIOS standards,

respectively.

Four “standardized applications” intended to use the services are defined, one in each

of the last four volumes of the set: workstation management, workstation planning,

controls, and sensor/effector. The controls volume includes the definition of a neutral

command language (NCL) for numerically controlled machine tools.

Volume 2 gives formal models in the EXPRESS language of information required in

SOSAS-compliant systems. This volume defines three categories of information

models: execution, manufacturing practice, and controller practice. Many hundred

EXPRESS entities and types are defined. Rather little explanatory text accompanies the

formal EXPRESS statements.

The SOSAS volumes include extremely little to describe the range of applications to

which the architecture is intended to apply. Conformance is given attention in five of

the six volumes, but is marked as “TBD” in many places in volumes IE, IV and VI. The

SOSAS provides no methodology for developing systems which comply to its

architectural specifications.
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6.2.5.2 Subsumption

A control architecture called the “subsumption” architecture has been developed by

Rodney Brooks [Brooks 1] which is quite different from any of the others discussed in

this report. The focus of the architecture is on systems such as robots, which may use

many controllers, but have system-wide behaviors, such as walking or hiding. The

general approach is to use layers of behaviors, with upper level behaviors being built

on lower level behaviors. For example, the “exploring” behavior is a level above the

“moving around” behavior, and uses the “moving around” behavior.

The subsumption architecture uses sensed data from the environment directly as input

to the controllers. This approach is in contrast to the approach (used in MSI and RCS)

of constructing a model of the environment from the data and using this model as an

input to controllers.

The atomic unit of the subsumption architecture is a process, usually implemented as

an augmented finite state machine. Processes are grouped into behaviors as a molecular

unit. There can be message passing, suppression, and inhibition between processes

within a behavior, and there can be message passing, suppression, and inhibition

between behaviors. A behavior cannot interact with a process inside another behavior.

6.3 Architectures Emphasizing Data Aspects

Some architectures say little or nothing about control but emphasize data aspects. These

cannot be located along the control dimension of architecture classification, so we have

made a separate class for them.

6.3.1 CIM-OSA

CIM-OSA (Computer Integrated Manufacturing - Open Systems Architecture) is an

architecture being developed by the ESPRIT AMICE project [Chenl], [Joryszl],

[Jorysz2], [Klittichl], [Klittich2], [Pansel], [Shorterl]. The CIM-OSA scope is limited

to CIM but looks at the whole system life-cycle, including consideration of

requirements specifications at one end and system change at the other. The aim of the

architecture is to provide an integrated framework to support manufacturing within an

enterprise. The documentation of CIM-OSA does not define clearly what the

framework is. It includes, at least, an integrated data system architecture for

manufacturing enterprises.

The data system architecture provides “front end services” to users. There are four types

of front end service: application (e.g., CAD or CAPP), human, machine (e.g., robot or

NC machine tool), and data management. Each front end service uses a “data access

protocol” to provide the requested service. The two data access protocols are “business

process services” and “information services”.

The CIM-OSA architecture is a work in progress. Prototype implementations

conforming to the architecture are only now being built.

CIM-OSA does not include control in the architectural specifications. There is not even

any discussion of control processes as independent entities.
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More details on the CIM-OSA architecture are provided in Appendix E.

6.3.2 Harhalakis

[Harhalakisl] describes an unnamed data-oriented architecture for computer integrated

manufacturing which deals with data common to computer aided design, computer

aided process planning, and manufacturing resource planning. This architecture

‘focuses on the facility level of the enterprise and concentrates on the integration of

information, rather than hardware The intent is to ensure consistency and integrity

between data common to two or more modules. Each module is assumed to have its

own database.

Implementation is accomplished by identifying the key information types used by each

module and incorporating a rule base into a distributed database management system to

control the flow of data between modules.
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7 The RCS and MSI Architectures

Is it feasible for RSD and FASD to jointly develop any single reference architecture? If

it is feasible and done, how useful will the resulting architecture be?

It should be feasible for RSD and FASD to develop a joint architecture if its scope is

sufficiently limited. The broader the scope, the harder it will be to define a joint

architecture.

In this section we describe the RCS and MSI architectures individually and then

compare them issue-by-issue, using the issues identified in Section 4 and Section 5. An
issue-by-issue analysis of MSI and RCS is in Appendix C.

7.1 The RCS Architecture

The bibliography to this report lists 40 papers about RCS by 14 primary authors. There

are more papers about RCS not reviewed for the report. In this section we will use “the

RCS papers” to mean the 40 papers about RCS which were reviewed.

This section provides a brief description of RCS, using the elements of architectural

definition identified in Section 3 of this report to structure the section.

The definition of RCS has evolved over the years, and different people developing or

using it have different views on what it should be. The description given here is

intended to follow the mainstream, as defined primarily by the eleven papers by James

Albus reviewed for this report Where there are significant variations in other papers,

they are cited, but we have not tried to describe all variants of RCS. A more detailed

discussion of RCS and its variants may be found in Appendix C

7.1.1 Scope and Purpose

RCS is intended as an architecture for complex, integrated machine control systems7

which work in a changing world and keep pace with the changes in real time. The

spectrum of intended RCS applications includes:

(1) high-speed servo control of machines with multiple joints or axes of motion

(2) coordinated control of several machines or large machines with several

subsystems

(3) computer integrated manufacturing

(4) mining

(5) submarine navigation

(6) space station robotics

(7) land vehicle driving.

7. Most of the RCS papers also say that RCS is an architecture for “intelligent” systems. In this report,

however, we do not deal with the notion of intelligence.
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7.1.2 Domain Analyses

The RCS architecture does not require any formal analyses. In order to apply RCS,

however, a user of RCS will find it necessary perform analyses (task decomposition,

controller hierarchy structure, etc.).

7.1.3 Architectural Specifications and Methodology For Architectural Development

In most of the RCS papers, architectural specifications are not distinguished from

methodology for architectural development. Some papers ([Quintero3, page 3], for

example) explicitly say that “methodology” and “architecture” are interchangeable.

Nevertheless, a methodology for architectural development for building RCS systems

is given in at least one RCS paper [Quintero3, section 6], which describes the activities

a control systems developer should do and the types of architectural specifications that

should be produced as a result.

RCS is not explicitly divided into tiers of architectural definition in the literature

describing it, but it seems implicitly to have three tiers below the top level, as shown in

Table 1 on page 9, so that RCS fits that table fairly well.

7.1.4 RCS Control Systems and their Environments

The RCS architecture provides for control of systems which react to events in the

environment. Control systems are expected to have mechanisms for sensory input so

that changes in the environment can be detected. The control system is constantly

monitoring its sensory input to determine when events have occurred in the

environment that it must react to. The processing of raw sensor data into abstract

information about the condition of the environment is termed situation assessment.

Once situation assessment has been performed, the control system makes decisions

about what actions should be taken and plans reactively for the events it perceives. The

execution of plans produces the external actions needed to cope with the environmental

changes. An RCS controller continuously performs a sense-decide-act cycle.

7.1.5 Architectural Units of RCS

An RCS system interacts with the environment by sensing conditions in the

environment with its sensors and performing actions in the environment with its

actuators. The internal representation of selected features of the environment and the

state of the RCS system is termed the of the system. The world modeling architectural

unit governs interactions with the world model. In addition to world modeling and the

associated world model, an RCS system includes three other architectural units. The

four internal architectural units of RCS are:

(1) sensory processing (SP),

(2) world modeling (WM),

(3) behavior generation (BG),

(4) value judgment (VJ).
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In early papers about RCS, behavior generation is often called task decomposition

OD).

The sensory processing, world modeling, and value judgment architectural units are

involved in situation assessment, while the value judgment and behavior generation
o

architectural units are involved in deciding what to do. Figure 1 , “RCS View of an

Intelligent Machine System,” illustrates these conceptual architectural units. The

system includes everything above the lower horizontal dotted line. The world model is

central, since other architectural units rely upon it to provide and accept current

information about the environment. The remainder of the architectural units are

arranged in a clockwise loop, depicting the notion that the system continually repeats a

sense-decide-act cycle.

SITUATION PLANNING &
ASSESSMENT

“
“|

— ” EXECUTION

PERCEIVED
SITUATION

PLAN
EVALUATION

Figure 1. RCS View of an Intelligent Machine System

8. [Quintero3, Figure 2], [Albus 4, Figure 1], [Hermanl, Figure 5], [Michaloskil, Figure 1]
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In Figure 1, the sensory processing function system (described in more detail in Section

7.1.8) takes sensory data from sensors, interprets the data, and passes the interpreted

data to world modeling.

The world modeling function keeps a description of the environment and the internal

state of the system (the world). It receives information from sensory processing for

updating the world model. It also predicts events and sensory data and answers

questions about the world model. The world modeling function interacts with the RCS

system’s database. The database is usually described as a distributed, global database -

in the sense that all data is available throughout the system.

The behavior generation function (described in more detail in Section 7.1.6) makes

plans and carries them out by controlling the system’s actuators.

The value judgment function evaluates both the observed state of the world and the

predicted results of hypothesized plans. It computes costs, risks, and benefits both of

observed situations and of planned activities. The value judgment function thus

provides the basis for choosing one action as opposed to another, or for acting on one

object as opposed to another.

In terms introduced earlier in this report, “task generation” in RCS is performed by the

value judgment and behavior generation function, with input from the sensory

processing module and sensors. “Task execution” is performed within the behavior

generation module of RCS. The following section gives additional details on task

generation and execution in RCS.

7.1.6 Hierarchical Levels in RCS

The behavior generation system in RCS is strictly hierarchical. That is, each controller

responsible for behavior generation has at most one superior and zero to many
subordinates, for the purposes of performing actions. Control levels are typically

refered to by number (numbering from 1 at the bottom, on up) or by a label. Different

applications of RCS have used different labels for these levels, but typically the lowest

level is termed the servo level, next is the primitive level and above that is the

elementary move (or e-move) level.

Superiors interact with subordinates by sending commands to them and receiving status

messages from them. Each controller has a number of tasks that it can carry out, and

these tasks are understood by the superior of the controller.

The RCS architecture decomposes system activities into hierarchical levels. The levels

are characterized by the relative amount of time taken to perform activities and by the

relative spatial extent of the activities. Roughly an order of magnitude change in spatial

and temporal extent is expected between any two adjacent levels, with activities getting

smaller and faster at lower levels of the hierarchy. Between levels, a corresponding

change is also expected in the interval of time over which the system detects and

remembers events. Approximate times corresponding to the RCS control levels are

shown in Figure 2.
9

9. [Albus4, Figure 4], [Albus5, Figure 22a], [Albus6, Figure 5], [Albus7, Figure 4.2], [Albus8, Figure 2],

[Michaloskil, Figure 3], [Quintero3, Figure 4].
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At each control level, the sensory processing, world modeling, behavior generation and

value judgment architectural units may exist Figure 3
10

illustrates a six level RCS
architecture appropriate for telerobotic applications. The label TD on Figure 3 and

elsewhere in this section stands for task decomposition , which is a synonym for

behavior generation.

10. [Albusl, Figure 3], [AlbusS, Figure la], [Albus6, Figure 2], [Albus7, Figure 1.1], [AlbusS, Figure 1],

[Fiala2, Figure 1], [Fiala4, Figure 1], [Herman 1, Figure 6], [Herman!, Figures 1, 4, 6, 7, 14, 18], [Hermans,

Figure 1], [Lumial, Figure 1], [Lumia2, Figure 1], [Lumia3, Figure 1], [Szabo 3, Figure 1], [Wavering 1,

Figure 1]. Many versions of the figure have G instead of SP, M instead ofWM, and H instead of TD.

59



Feasibility Study: Reference Architecture

In considering Figure 3, it must be understood that each rectangle labeled SP, WM or

TD (except those in the top level) normally represents several separate instances of the

given function. That is, there are several TD5 behavior generators that are subordinates

of the TD6 behavior generator, for each TD5 behavior generator there are several TD4
subordinates, and so on down the hierarchy. The situation can be visualized by

imagining that the figure is the front view of a 3-dimensional arrangement, which, when

looked at from the side, is a hierarchy. The version of the figure in [Szabo5] hints at

this, and it is discussed in [Fiala2, section 1].

SENSORY WORLD TASK
PROCESSING MODELING DECOMPOSITION

DETECT MODEL PLAN
INTEGRATE EVALUATE EXECUTE

GOAL

Legend

SP - Sensory Processing

WM - World Modeling

TD - Task Decomposition

Figure 3. RCS Control System Architecture
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Dyna mic path
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An example of a hierarchy in which there are several SP, WM, and TD boxes at each

hierarchical level below the top is shown in Figure 4 (a portion of Figure 1 from

[Albus2]). This figure shows a control system for a robot with a camera, an active

fixture, and grippers. The robot is subordinate to a workstation level controller not

shown on the figure. Four hierarchical control levels are shown: equipment task, e-

move, primitive, and servo. As noted in the preceding paragraph, there are several SP,

WM and TD boxes at each hierarchical level below the top.

Workstation controller
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TI SP WM Path

planner E-move
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generator
V ^
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Joint
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SP - Sensory Processing

WM - World Modeling

TD - Task Decomposition

Figure 4. Example RCS Robot Control Hierarchy
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7.1.7 Tasks and Work Elements

Methods of defining work elements and describing tasks are not strictly specified in

RCS, and different sorts of specifications are used in different implementations. The

most detailed suggestions for task definition are given in [Michaloskil, section 4]. In

general, the RCS papers use the term “task” for what this report calls “work element”.

In most RCS implementations, a work element has a name, and the effect of carrying

out a work element with a given name is specified in some way. It is also usual to

describe the information needed to specify an instance of a work element. In carrying

out an instance of a work element, this information may be passed as parameters to a

command or retrieved from a database. In all implementations, a command to perform

a task may be specified by naming a work element and giving the values of zero to many

parameters which characterize the work element.

7.1.8 Sensory Processing

The sensory processing function of an RCS system takes sensory data at the lowest

hierarchical level, interprets the data, and passes the interpreted data to world modeling.

Sensory data may need to be filtered as it arrives. Sensory data may also need to be

integrated over space (for constructing a map, for example) or time (for speech

recognition, for example). As indicated on Figure 3, the integration of data proceeds

upwards from level to level. In the case of shape recognition in a vision system, for

example, points might be detected at the lowest level and fed upwards where some of

them may be integrated into lines; lines are fed upwards, and some of them may be

integrated into boundaries of (geometric) faces; faces may be fed upwards and

integrated into closed shells of solid objects.

The sensory processing function may be aided by receiving predictions of sensory data

from the world modeling function.

Sensory processing at upper levels may perform data fusion, in which different sets of

data which should be consistent (such as the distance to an object measured by optical

triangulation, radar, and sonar) are reconciled, or different types of data (outline and

color, perhaps) are correlated.

7.1.9 Task Definition and Decomposition

The behavior generation (or task decomposition) process is shown in Figure 5

Behavior generation is decomposed into three parts:

( 1 ) job assignment (JA)

(2) planning (PL)

(3) execution (EX)

11. [Albusl, Figure 4], [Albus4, Figure 7], [Albus5, Figure 2], [Albus7, Figure 2.1], [Hermanl, Figure 9],

[Huangl, Figure 3], [Lumial, Figure 2], [Lumia3, Figure 2], [Michaloskil, Figure 4], [Quintero3, Figure 5]
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A task is decomposed by a job assignment manager (JA) into subtasks for several

subordinates. The planner for each subordinate (PL1, PL2, and PL3 on the “Spatial

Decomposition” axis in the figure) orders the subtasks in a temporal sequence (the

“Temporal Decomposition” axis). Each subtask is executed by an executor (EX 1 , EX2,

and EX3 on the figure). The same executor will execute different subtasks at different

times, as indicated by the dotted circles and dotted lines on the figure. The figure shows

what happens at one hierarchical level. The subtasks coming from an executor at one

level become the tasks for the next level down.

63



Feasibility Study: Reference Architecture

7.1.10 Communications

RCS does not specify a standard for communications but anticipates that at lower

hierarchical levels, fast communications will be required. Some RCS papers,

[Quintero3] for example, state that communications must permit input and output at any

time, regardless of current system activities, in order to ensure that sufficiently fast

performance can be achieved. In most implementations, shared memory or some form

of NIST’s Common Memory [Libesl], [Rybczynski] has been used.

Standard communications protocols such as Ethemet/TCP/IP [Tanenbaum] or RS-232

[EIA] have been used in RCS implementations for interfacing processes which are not

on a common bus. For mobile applications, radio frequency communications hardware

is also used.

7.1.11 Error Recovery

Automatic error recovery for handling “abnormal” error conditions is discussed in

[Albus5] and [Herman3]. In [Albus5] it is anticipated that if there is a subtask failure,

the executor should branch immediately to a pre-planned emergency subtask while the

planner selects or generates an error recovery sequence. [Herman3] reports an

implementation of a subtask failure re-planning software module.

7. 1 . 12 Conformance Criteria

Although a few RCS papers discuss the issue of conformance criteria, none of the RCS
papers contain any.

7.2 The MSI Architecture

The MSI (Manufacturing System Integration) architecture is a product of the

Manufacturing System Integration project which was conducted from 1990-1993

within the Factory Automated System Division. This architecture is the work of the

MSI architecture committee members: Ed Barkmeyer, Steven Ray, M. Kate Senehi,

Evan Wallace and Sarah Wallace.

The architecture is directly applicable to the production of discrete metal parts. Many
of the concepts are more broadly applicable, but a discussion of this is not included in

this summary of the architecture. The MSI architecture focuses upon the operation of a

shop which receives orders and raw materials for the production of parts and in which

each controller can be directly manipulated.
12 The architecture is required to be able to

control a shop with any combination of physical and emulated equipment. Additionally,

the architecture is required to permit the integration of systems not initially designed to

work within the architecture, such as commercial products or university-produced

prototype systems.

12. Other types of manufacturing organizations, such as rework organizations, which receive damaged

pieces to be repaired and must construct custom plans to repair them, or shops which contain autonomous

“subshops” such as tool cribs have been considered by the MSI architecture committee, and found to need

adaptations of the architecture which are not fully developed.
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The architecture draws upon the early work of the AMRF on hierarchical control

[Albusl2], [McLean 1], [Simpsonl] and the work of the Manufacturing Data

Preparation Project [Hoppl] which focused on information required for manufacturing,

particularly process plans and resources.

This section provides a brief description of the second version of the MSI architecture.

Although the second version of the architecture differs somewhat from the initial

version, many of the concepts from the initial architecture still apply. Documentation

for the initial architecture may be found in [Senehi2j.

7.2.1 Architecture Overview

The goal of the architecture is to integrate the operation of a shop which manufactures

discrete metal parts. Particular emphasis is placed by the architecture on the integration

of shop planning, scheduling and control functions in both nominal and error situations.

The architecture does not attempt to provide enterprise integration. In particular, it does

not describe information needed for business decisions, such as whether to buy or

manufacture a part.
13

The architecture approaches integration by identifying the systems in the shop which

need to be integrated, examining the interactions among the systems, and proposing

mechanisms to ensure that these systems function in a cohesive manner.

7.2. 1 . 1 MSI Architectural Units

The MSI architecture identifies a number of systems which are normally part of the

shop production environment. The architecture defines architectural units

corresponding to each of the shop systems identified, characterizing each system by the

functions which it performs. The MSI architecture avoids specifying the internal

structure of any of the architectural units. This approach facilitates building

implementations of the architecture which use systems which were not designed

specifically to work within the architecture.

The architectural units which correspond to shop systems and their functions may be

summarized as follows:
14

(1) Part Design—which creates the designs for parts, associated fixtures and jigs,

(2) Process Planning—which creates step-by-step plans or numerical code for

manufacturing a part and its associated fixtures and jigs, according to the part

design,

(3) Production Planning
15—which selects batch sizes, specific machines, and

scheduled times to perform the tasks specified by a process plan,

13. It does permit the user to include technical information such as cost functions for use in determining the

way in which an order is filled, or scheduling and quality parameters for the parts being generated.

14. Additional systems may, of course, be part of a manufacturing system, but these have not been

considered in the formulation of the architecture.

15. Schedulers are one type of production planning system.
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(4) Controllers—which perform manufacturing tasks,

(5) Order Entry—which permits entry of orders which direct a shop as to what

to make and when to make it,

(6) Configuration Management—which identifies and controls shop resources

and capabilities,

(7) Material Handling—which routes and delivers material throughout a shop.

7.2. 1 .2 Interactions of Architectural Units

Most architectural units are loosely coupled,
that is, they share information, but their

activities do not need to be coordinated except to ensure the integrity of the information

they share. In this report, this type of interaction is called indirect interaction.

In indirect interaction, the shared information is stored in a known location (e.g., a

memory location, database, file, variable), and components (of an implementation) may
be given access (e.g., read, write, no access) to the information as required.

Components which have access to the same information need not be known to each

other, and need not acknowledge any access or change of the information by any other

component.

In order to integrate architectural units which interact indirectly, the MSI architecture

specifies that it is sufficient to describe the shared information at a conceptual level, and

provide guidelines for the access of the information. The description of the shared

information is given through a number of information models. The information models,

and the guidelines for information access form the information architecture of the MSI
architecture. This will be discussed in detail in Section 7.2.2.

The production planning and control architectural units are tightly coupled, that is, they

must interact more closely than through the passive sharing of information. To
understand the interactions of these architectural units and the MSI solution to

integrating them, it is necessary to understand the MSI perspective on task generation

and execution in a shop.

A shop’s function is to manufacture products to fill the orders which it has received.

The orders are for some number of a specific product, which is described by a design.

For each design, a process plan is formulated. The process plan gives detailed

instructions on how to manufacture the product, using classes of resources. For

example, a process plan might say “This step requires a three-axis milling machine,”

rather than “This step requires machine XYZ001.” When an order is received for

making a number of a product, an appropriate process plan is retrieved or generated, the

order is broken into batches for manufacturing and for each batch, the specific resources

for product production are selected and the plan and the resources are scheduled. The

end result of performing these operations is a production plan which contains all

necessary information for the making of the product. When the scheduled time for the

start of manufacturing of the batch arrives, the controllers in the shop interpret the

production plan and perform the work to manufacture the product.
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In performing the work of manufacturing the product, the activities of controllers must

be coordinated. This is accomplished by using two mechanisms. First, as described

above, production plans are generated which schedule the activities of each of the

controllers in the shop. Secondly, controllers are connected in a control structure that

provides support for integrated start-up, shutdown, emergency stopping, and affecting

the disposition of tasks generated from production plans. The MSI architecture requires

that the controllers in the shop be arranged in a hierarchical control structure.

Commands are transmitted form superior controllers to their subordinate controllers,

and subordinate controllers send status information to their superiors. Interaction

through a command-and-status mechanism is refered to as direct interaction.

Thus, the integration of the tightly coupled planning and control architectural units

requires both indirect interaction through the process and production plan information

and direct interaction through a control hierarchy. The representation of the information

for process and production plans is discussed in Section 7.2.2. The control structure is

discussed in Section 7.2.3.

7.2.2 Information Architecture

As previously mentioned, the MSI architecture states that for indirect interactions

among architectural units, it is necessary only to describe the shared information and

the information access characteristics (i.e., which components can access which

information and what type of operations the components can perform). The following

sections discuss each of these in turn.

7.2.2. 1 Information Models

The information needed to integrate the manufacturing shop is highly interconnected.

The Integrated Production Planning Information Model describes the manufacturing

environment at a high level of abstraction. This model shows the relationships among
product design, shop resources, plans, shop configuration, and shop status. Detailed

models were made for process and production plans, resource types, orders, tools, shop

status, and shop configuration. Following is a brief summary of the information models

in MSI. More details of the process plan model are available in [Catronl]. Details for

other models are available in [Barkmeyer2] and [Rayl]. The specification of product

design is imported from the information models generated by the International

Standards Organization Technical Committee 184, Subcommittee 4 (ISO TCI 84/SC4)

[IS03].

7.2.2. 1.1 Plan Models

Process, production managed, and production plans are key vehicles by which

information is shared between planning and control architectural units in the MSI
architecture.

A process plan designates the steps necessary to make apart, specifying the sequence(s)

of operations by which a part is made and the relative timing of these operations. As
received from the engineering systems, process plans should contain a number of cost-
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effective alternatives which take into account the resources of the local production

environment, but not the status of such resources. Process plans are directed graph

structures which may express both alternative and parallel paths of part production, and

sets of potential resources for part production. Process plans provide for

synchronization of operations by several mechanisms and support hierarchical

decomposition of operations as well. This definition differs from the traditional use of

the term “process plan” in that alternatives are expressed within a single plan and the

plan may specify resources by their class instead of specific instances.

A production managedplan gives the plan for producing a batch of parts and is derived

from the process plan for making that type of part. One or more alternatives from the

process plan is selected and material handling steps are placed where needed.

A production plan is constructed from the production managed plan by selecting,

scheduling and planning for the allocation of the specific resources, and refining the

material handling planning necessary to move the batch of parts from one resource to

another. Since production managed and production plans are constructed with reference

to a process plan, it is obvious that their representations are logically, if not physically,

linked.

Production plans are parsed by controllers. In parsing a production plan, a controller

may request information from databases, make judgments on which alternative to take

based on this information, produce commands to direct subordinates to perform

manufacturing tasks, or perform manufacturing tasks.

7.2.2. 1.2 Resource Model

The resource model contains a physical and functional description of resources

available in the shop. It contains templates for all such resources (e.g., machine tools,

robots), information on shop floor configuration, and status information on shop

systems. In addition to the typical physical resources and equipment expected in a

resource model, the resource model includes consumable resources (such as coolant

and solder) and logical resources which are pieces of information which have been

created to assist the production management and control functions. Items from the

resource model are used in both the process, production managed and production plans.

The models necessary for shop integration are given in the table below.
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Table 3: MSI Information Models

Model Description

Product Model Specifies information needed to describe the parts being

manufactured; includes information needed to create a solid model of

the part, to describe manufacturing features, and to specify detailed

information about tolerances.

Process Plan Model Describes plans which give the steps necessary to make a single part,

specifying the sequence(s) of operations by which a part is made, the

relative timing of these operations, and classes of resources required.

Production Managed
Plan Model

Describes plans for producing batches of parts along with routing

information and is derived from the process plans for making those

types of parts.

Production Plan

Model

Describes fully developed plans for making batches of parts, the

plans include specific resource selections, allocation and schedules

for part production.

Resource Model Contains a physical and functional description of resources available

in the shop. Resources may be physical or logical.

Order Model Describes information about orders; includes the type of the part to be

manufactured, the quantity to be made and identifies information

needed to record the engineering status and production status of the

order.

Inventory Model Specifies information needed about stock (e.g., part blanks),

consumable machining supplies, free carriers, and completed parts no
longer in-process. Such information includes type, quantity, location,

etc.

Configuration Model Describes the relationships between controllers, schedulers and

network entities.

Materials Model Describes the characteristics of raw materials, stock, and consumable

machining supplies.

1.22.2 Data Storage and Access

The MSI architecture specifies that information which must be shared among
components be placed in a data storage location which is accessible by all components
which need this information. The architecture does not specify the data storage

mechanism. Options include files, variables, memory locations, databases, etc. MSI
permits both physically distributed and centralized storage. The access method
typically depends on the storage mechanism and may be different for different data,
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depending upon which components need to share the data. Different access privileges

to each item may be accorded to different components. In some cases, multiple

components may be able to write the same data.

The architecture states that it is desirable that the physical and logical location of the

data be invisible to components of an implementation of the architecture insofar as

practically possible within performance constraints. The architecture also permits

components to make local copies of shared information, but states that in this case, the

component is responsible for maintaining consistency between the local copy and the

public copy of the shared information.

At present, the architecture does not specify which systems should access each specific

item of data. This omission was intentional, to give implementors of systems more

freedom. Such a specification is a possible enhancement of the architecture and would

aid vendors in constructing systems that could be made interoperable.

7.2.3 Control Architecture

In the MSI architecture, the control architecture provides for the integrated start-up,

shutdown and maintenance of the controllers in the shop and provides a mechanism for

performing operations on tasks such as starting, aborting, temporarily halting and

resuming them. It is through the control architecture that errors in planning and task

execution are discovered and repaired. The basic tenets are discussed in the following

sections.

7.2.3. 1 Levels of Control

In the MSI architecture, control levels are arranged in a hierarchical tree structure. The
hierarchical control structure has a single highest-level controller. Every other

controller has exacdy one superior controller from which it receives commands, and

zero or more subordinate controllers to which it may issue commands. 16 See Figure 6

for an illustration of sample permitted control trees.

In the MSI architecture, the highest level controller is the shop controller. The shop

controller has general responsibility for all production processes involved in filling

orders. The coordination of all orders for parts, determination of global scheduling

constraints and creation of routings for part delivery are done by the shop controller.

However, many details required to fill these orders are the responsibility of subordinate

controllers and are not visible to the shop controller.

16. The reason for this constraint on the hierarchy structure is related to the mechanisms for recovering from

errors. Should multiple supervisors be allowed, there world be no guarantees that any single controller in the

hierarchy has a complete picture of the subordinate controller’s status, making error recovery extremely

difficult
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Equipment is controlled by an equipment controller. By definition, an MSI equipment

controller can execute only one task from its superior at a time; any internal task

decomposition by an equipment controller invisible to the MSI architecture. Equipment

controller tasks are items such as loading a part, opening a vise, or manipulating the

spindle of a machine tool, depending on the particular equipment.

Between the shop and equipment controllers there may be any number of controllers,

called workcell controllers ,
which coordinate the activities of two or more subordinate

controllers, each of which is either an equipment or a workcell controller. The number

of controllers between a given equipment controller and the shop controller remains

unchanged regardless of the tasks being executed. This number specifies the level of

control for that controller, and may be different for different equipment controllers

depending on the complexity of coordination necessary. See Figure 6 for an example.

(a) This is an example of a control hierarchy, in which the number of

levels between each equipment controller and the shop controller is the same.

(b) This is an example of a control hierarchy in which the number of

levels between equipment controllers and the shop controller differs.

Figure 6. Examples of Valid MSI Control Hierarchies
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In most cases it is expected that, once established, the control hierarchy will remain

fixed as long as the shop is in operation. In some cases, it is possible to reconfigure the

control hierarchy dynamically. It is intended that dynamic reconfiguration will only be

used to remove a dysfunctional equipment controller or to bring new equipment on line.

In any case, at any fixed time the MSI architecture specifies that there be a single

control hierarchy originating at the shop controller.

1232 Task Generation and Execution Process

In the MSI architecture, the execution of manufacturing tasks is a result of the parsing

of production plans. For each controller involved in making a product, a production

plan must be available to tell the controller what task to perform and when to perform

it. Production plans are generated from corresponding process plans. Therefore, the

hierarchical organization of process and production plans mirrors the hierarchy of

controllers in the MSI architecture.

For each part design, process plans must be constructed for each level of the

manufacturing hierarchy. Although process plans contain similar structure at all levels,

distinct types of operations are performed at each level which are unique to that level.

Listed below are descriptions of the operational characteristics of process plans at

levels pertinent to the MSI architecture.

• Shop Level

At the Shop Level, process plans primarily address the movement of

workpieces and sequencing of different types of machining operations, such

as turning, milling, etching, etc.

• Workcell Levels

Workcell Level process plans prescribe the coordination of controllers

subordinate to a given workcell, such as the use of a robot to load a machine

tool table. Such plans can require extensive use of synchronization between

process plans for subordinate controllers.

• Equipment Level

Equipment Level process plans describe the most detailed level of operation

that a process planner would generate. In this case, the activity called process

planning in MSI terminology overlaps with what is usually termed off-line

programming. The steps within such a plan provide instructions which are

carried out by individual pieces of equipment. Example operations within the

domain of metal cutting might include steps such as drill hole or chamfer

edge. The degree of detail required in such a step depends on the capability of

the controller. If the controller possesses sophisticated capabilities, higher

level instructions such as those above, or even as abstract as load part and

fixture part, might be sufficient. If the controller is less capable, instructions at

the level of numerical code may be required.
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While the specification of the task is gleaned from the process and production plans, a

controller will not perform the specified task unless it is instructed to do so by its

superior
17

. This permits the supervising controller to remain in control of the execution

of the task by its subordinate. The ability of the supervising controller to manipulate the

execution of the task by its subordinate on a gross level (such as stopping or aborting

the task) aids gready in handling scheduling and execution errors.

7.2.33 Error Recovery

In an error-free environment, the relationship between planning and control is

straightforward. When errors occur, this relationship is greatly complicated and the

ability of the control system to recover from an error is intimately related to the

capabilities of the planning and controller systems. The MSI architecture explores error

recovery from specific types of errors in the shop in detail, extracts requirements for the

planning and control systems and devises interfaces which support error detection and

recovery. These aspects of the architecture are detailed in the following sections.

7.2.33. 1 Error Scenarios

Errors can be grouped into three different classes based upon their cause: resource error,

task error, and tooling error. A resource error occurs when a piece of equipment, whose

controller is part of the control hierarchy, becomes impaired (e.g. the machine tool

changer jams). A task error is an error which affects a specific task only; the resource

on which it is being performed is unaffected (e.g., if the robot drops the workpiece, the

robot is unaffected). While a resource error usually causes a task error, task errors may
occur without a resource error. A tooling error occurs when a tool is damaged (e.g., a

cutter breaks) or unavailable (e.g., the tool was not delivered at the proper time). Tools

differ from other resources in that they are not permanently associated with any

member of the control hierarchy, but are moved from resource to resource as needed.

The MSI architecture committee examined a number of error scenarios from both the

task and resource error categories. It was observed that the use of a hierarchical control

system facilitates the localization of task error handling. When an error occurs in the

execution of a task, if it is possible to resolve it by affecting only subtasks of the task,

controllers at all levels of control above the superior controller are unaffected by the

error. If localized error recovery is not achieved at this level of control, the recovery for

the error is handled by the next higher control level in the hierarchy. At each level, there

is potential for error resolution. Only in the event that the error cannot be resolved at

any lower level is a global solution to the error required.

17. The Shop level controller is a special case. The architecture specifies that there is an entity which checks

to see if a new order has arrived and which then selects and passes the appropriate production plan to the

Shop controller. In an implementation, the previously described entity may be a separate component, or may
be within the Shop controller.
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For the error scenarios considered, methods of recovery from scheduling errors and

equipment failures were examined and incorporated into the specifications for the

functionality of architectural units and the interfaces of the architectural units in the

control architecture. This is discussed briefly in the following sections. More details on

error-handling in MSI are available in [Wallacel] and [Senehi3].

7.2.3. 3.2 Planners, Controllers and Control Entities

Analysis of the error scenario reveals two capabilities which a production planner must

have in order to be effective. The first and more general requirement is that the

production planner must be able to do re-planning. Re-planning is the ability to localize

the error to a subset of the tasks and only re-plan those which are affected.

If a re-planning capability does not exist, automated error recovery will be extremely

limited. The production planner must schedule for the entire shop again. The

availability of resources can be fed back into the scheduler, but the scheduler can not

plan for the completion of partially executed production plans. Human intervention is

required to avoid scrapping everything in execution when an error occurs.

The second requirement is the need for the production planner to work with a

hierarchical control system. In order to localize an error at a given level of the

hierarchy, the production planner must be able to plan for that level. Additionally, it

must be possible for the production planner to be informed that a resource or task error

has occurred at a given level, and re-planning may be necessary.

Error information which is needed to re-plan must be made available to the production

planner (e.g., how many minutes late a machining task is expected to be). As a

minimum, the production planner must be able to be notified by the shop controller that

a resource or task error has occurred and re-planning may be necessary. It is the

controller’s responsibility to notice the error and inform the production planner; the

production planner does not monitor either the health of the controller or the execution

of tasks. Beyond these interface requirements, the internal architecture of the

production planner is not specified.

When an error occurs, a controllermay apply any strategies it has available to repair the

problem. If these local efforts at correcting the problem fail, the controller must hand

the problem to its superior for correction. In order for a controller to participate in error

recovery involving its superior, it must be able to:

(1) detect when a subordinate has failed,

(2) detect when a subordinate’s task is late,

(3) abort task execution,

(4) halt task execution and retain information to restart later,

(5) restart task execution from previous point,

(6) halt task execution and discard all information related to the task,

(7) halt task execution and regard the task as complete.
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(8) estimate task completion time, and alter task execution based on new

parameters (e.g., new start, completion times).

The inability of either the production planner or the controller to perform any of the

indicated functions does not prevent a production planner or controller from being

integrated into a control system for a shop using the architecture, but it does weaken the

recovery ability of the system.

7.2.33.3 Control Entities

Since effective participation in the error recovery mechanism requires both a

(production
18

) planner and a controller, the MSI architecture defines an architectural

unit called a control entity, which consists of a planner and its associated controller.
19

It should be emphasized that the control entity is a logical, rather than a physical

architectural unit. The planner in the control entity is required to support scheduling of

plans and the allocation of resources, and may support process planning and batching.

The controller must support task execution and may have any level of intelligence

desired.

Since process planning systems, production systems, and controllers are not likely to be

capable of fully supporting error recovery in the near future, a mechanism for external

intelligent intervention is included in the MSI architecture. Throughout this document,

the intelligent agent will be referred to as the guardian.

The MSI architecture requires interfaces for any control entity in the architecture and

contains detailed specifications for each of the interfaces. In the following sections, the

communications mechanisms for control entities, the interfaces of the control entity,

and the physical distribution of a control entity will be discussed in turn.

7.2.33.3. 1 Communications of Control Entities

All communications between control entities which are direct (see Section 7.2. 1.2), are

required by the MSI architecture to be via a command and status interface. Such

interfaces require communications channels between components. The MSI
architecture requires that the communications channels for command and status

messages use a point to point, guaranteed message communications paradigm. One
communications mechanism that provides such a communications service is the

Manufacturing Automation Protocol (MAP) [MAPI], [MAP2], with the

Manufacturing Messaging Specification (MMS) application layer [ISOl].

Since message delivery is guaranteed, messages can rely on information conveyed in

previous messages. This means that messages need not contain all the information

required for a complete picture of the situation, reducing the amount of data which must

be transferred with each message. As a consequence of point to point communications,

18. The planner specified here is the production planner architectural unit However, we will refer to it as

planner in the remainder of the discussion.

19. The architecture permits hierarchies of planners without associated controllers. These hierarchies would

only be needed for “what if’ scenarios and would not need error recovery capabilities.
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the communications pairs must be set up when the connections are established, and it

is not possible to hide the way in which communicating control entities are physically

distributed.

7.2.3.33.2 Control Entity Interfaces

A control entity may have as many as five types of interfaces. These direct interfaces

are:

( 1 ) a planning interface—which governs interactions of superior and subordinate

planners concerning the selection, generation and scheduling of process,

production managed and production plans,

(2) a controller interface—which govern interactions of superior and subordinate

controllers concerning task execution,

(3) a guardian to planning interface—which governs how an intelligent agent

may interact with the planner,

(4) a guardian to controller interface—which governs how an intelligent agent

may interact with the controller,

(5) a planner to controller interface—which governs how the planner and the

controller may interact in both ordinary and error situations.

A detailed specification of each of these interfaces is found in [Wallacel]. A conceptual

view of the potential direct interfaces is shown in Figure 7 [Wallacel].

In an implementation of the architecture, which interfaces must actually be supported

is determined by the physical
20

distribution of the control entity. The general rule is

that, if the two interacting components are physically distributed, the exposed interface

must conform to the corresponding interface specification.

7.2.3.33 .3 Physical Distribution of Control Entities

Permitting flexibility in the physical distribution of the control entity allows the MSI
architecture to accommodate a number of common configurations for planners and

controllers. Examples are:

( 1 ) A centralized planning system may be used, provided that each controller has

a logically distinct interface to the planning system and that the planning

system can plan for each member of the hierarchy. In this case, the internal

functioning of the planner is not made public, but the interfaces among
controllers and between a controller and its planner are exposed. This

configuration is shown in Figure 8.

(2) A distributed planning hierarchy which mirrors the control hierarchy may be

used. In this case, the interfaces between planners, between controllers, and

between each controller and its planner are public and must conform to the

20. Architectural entities are considered to be physically distributed whenever they consist of two or more

(operating system) processes or have portions which execute on physically distinct processors.
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Legend

P-Planner

C-Controller

G-Guardian

Figure 7. MSI Control Entity Interfaces

MSI interface specification. Figure 9 shows this configuration
21

.

(3) The planner and controller functions may be embedded in a control entity,

resulting in a single hierarchy of control entities. In this case, the interfaces

between the planner portion of a control entity and the planner portion of both

its superior and subordinate control entity are public, and the corresponding

controller interfaces are public, but the interface between the planner and the

controller of any one control entity remains private. Figure 10 shows this

configuration.

In Figures 8, 9 and 10, the control entities are homogeneous (i.e., they all split or

combine their component planners and controllers the same way). The architecture also

allows the use of heterogeneous control entities.

21. Note that, in figures 8, 9 and 10, the interface between the planner and the controller are shown only in

the highlighted areas.
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Figure 8. An MSI System with a Centralized Planner
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Figure 10. An MSI System with Embedded Planners

7.2.4 Conclusion

The MSI architecture provides an architecture for a shop which manufactures discrete

parts that supports information integration for the major shop systems and provides

specifications for an integrated production planning and control environment. The MSI
architecture can be used with a centralized or a distributed planner, and other

combinations of control and planning systems.

The operations of a shop are guided by the schedules generated for its current orders.

This mode of operation encourages global optimality for shop production, since local

schedules are constrained to accommodate the needs of the factory. Since the shop

schedule is important to efficient functioning for the shop, the architecture provides for

schedule maintenance via detailed sets of command and status messages for controller

and planner interactions. The use of hierarchical control aids in localizing and

recovering from scheduling errors.

It is anticipated that the MSI architecture will be useful both for the integration of

current shops and in future research. The information models are immediately

applicable to aid in shop integration, while the interface specifications provide direction

for further research in automated re-planning and control.
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7.3 Compatibility Assessment of MSI and RCS Architectures

Two architectures are most compatible when it is possible to take systems which were

built according to the specifications of one architecture and use them, with minor

modifications, in a system built conforming to the other architecture. Two such

architectures are said to be interoperable . If this is not possible, it may still be possible

to build other architecture(s) for specific purposes using features from both

architectures.

We will present a discussion of the interoperability of the two architectures, then a

summary of the detailed point-by-point comparison of the MSI and RCS architectures

according to the issues identified in the previous sections. The full text of the point-by-

point comparison is available in Appendix C. Finally, we present our conclusions

concerning the degree of compatibility of the two architectures.

7.3.1 Interoperability Assessment

One way to assess the interoperability of two architectures is to compare how current

implementations would be able to function together. Suppose we took an

implementation ofRCS aimed at machining discrete parts, and we tried to get it to work

together with MSI by making an RCS controller subordinate to an MSI controller. We
chose this mode of knitting the two control systems together as the one with the highest

probability of success, since the MSI architecture specifies a method of including black

box controllers in the hierarchy and anticipates this method of inclusion for real-time

systems.

We would have to agree on a mechanism for communicating between the RCS
controller and the supervising MSI controller. To do this, a front-end for the RCS
controller must be made which exhibits the MSI interfaces to the superior controller and

planner and communicates to the MSI control entity using a compliant communications

system (such as MMS). The front end would also have to communicate with the RCS
controller using the communications mechanism which RCS expects.

Such a front end must have considerable functionality. It must be able to translate

command and status information between MSI and RCS formats, filling in

appropriately if adequate information is not available, or dropping extra information.

The front end would have to interpolate the status of the resource, controller, and task

well enough to populate the expected parts of the MSI information base. Finally, the

front end would have to neutralize the cycle-time difference between the RCS
controller and the MSI controller by responding appropriately in real time.

An interface is therefore possible. However, the real question would be what value can

be derived from such an arrangement. The real-time capabilities of the RCS controller

would clearly be preserved, and the controller would be integrated into the factory’s

information and control structure via the MSI architecture. However, the ability of the

system to recover from errors depends on the sophistication of the front end and the

abilities of the RCS controller. To participate in error recovery, the MSI architecture

expects that a controller can perform the following functions:
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( 1 ) abort task execution,

(2) halt task execution, and retain information to restart later,

(3) restart task execution from previous point,

(4) halt task execution and discard all information related to the task,

(5) halt task execution and regard the task as complete,

(6) estimate task completion time,

(7) alter task execution based on new parameters (e.g. new start,

completion times),

(8) provide a guardian interface for human/intelligent intervention.

The RCS controller specification says nothing about any of these functions, other than

providing a human interface. Hence, it is not clear whether an RCS controller would be

able to support some of the functionality MSI expects. As an example, suppose a

controller cannot provide estimated task completion times. If the controller provides

enough information for the front end to accurately estimate the completion time, then

recovery from scheduling errors can proceed as usual in the MSI scenario. If there is no

reasonably accurate estimate of the completion time, the error recovery scenario will

not be activated until the supervising MSI controller notices that the task is late. If the

controller can not respond by disposing of the task as the superior controller directs, the

error recovery mechanism is compromised.

Similarly, the ability of the RCS controller to use and provide the information required

by the MSI information services will determine the degree of integration the RCS
controller achieves with the factory.

In summary, one can say that the ability of the RCS and MSI controllers to be coupled

in this way depends on features of the RCS controller which are not mandated by the

RCS architecture. It is unclear whether these functions could be required of RCS
controllers. Conclusions on this matter require in-depth study of the functional

capabilities of RCS controllers.

7.3.2 Summary of Point-by-Point Comparison

Given that the two architectures are not a priori interoperable, we proceeded with a

point-by-point comparison of the two architectures to determine where the

architectures are similar and where they differ. This section presents a summary of the

point-by-point comparison.

7.3.2. 1 Intended Domain

Many of the differences between the MSI and RCS architectures stem from differences

in intended domain. RCS’s primary focus is on uses which require real-time response

and in which the domain is unstructured and highly changeable. MSI’s primary focus

is on timely (but not real time) control in a highly structured, relatively predictable

manufacturing environment.
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MSI and RCS both apply to the control of systems, but in addition, MSI has connections

to maintenance, orders, and other concepts external to the system.

73.2.2 Conformance Criteria

The conformance criteria for the two architectures are fundamentally different.

Conformance to the RCS architecture consists of obeying certain basic tenets, which

involve both external behavior of the architectural unit and internal decomposition of

the architectural units. Most of the tenets are loosely stated and subject to interpretation.

Conformance to the MSI architecture consists of displaying architectural units which

understand specific information, exhibit certain interfaces and provide specified

functionality. The emphasis of MSI upon external characteristics, rather than internal

structure makes the inclusion of manufacturing systems not originally designed to work

with the architecture possible.

7.3.23 Domain Analysis

The MSI architecture provides the results of information analysis for the architecture

implementor’s use in the form of information models. RCS provides sample task

decompositions and data descriptions for the information required at the servo and

primitive hierarchical levels of the architecture. In addition, RCS provides

requirements which are aimed at ensuring that compliant controllers have the required

real-time capability.

Neither MSI nor RCS requires any formal domain analysis. However, in both cases,

some analysis must be done to determine a proper control hierarchy and task

decompositions.

73.2.4 Controllers and Other Architectural Units

Both MSI and RCS have architectural units from which an implementation of an

architecture is built. Primary among these units are the units which perform scheduling

functions and units which perform task execution and monitoring functions. In MSI
these architectural units are called planners and controllers; in RCS these modules are

called planners and executors. A major difference in functionality here is that MSI
assumes that plans exist a priori (although they may be adjusted at run-time) whereas

in RCS, plans may be constructed at run-time. This difference is a direct result of the

different environments for which the architectures are intended.

In addition to the basic task execution functions, the MSI architecture suggests that the

eight additional functions listed earlier be available to permit full use of the

architecture’s error recovery capabilities.

Beyond the functional requirements, the MSI architecture imposes strenuous interface

requirements for the controller/scheduler interfaces. These interface requirements

assume certain internal information is available, and that certain sequences of

messaging be followed (although in some cases, more than one sequence is permitted).

RCS has no similar interface requirements above the implementation level.
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In addition to specifying the basic planner/controller architectural units, RCS defines

other functions which must be present either as submodules within the controller or as

architectural units. These are sensory processing, behavior generation and value

judgment. These functions permit the control system to query about the world, evaluate

the results of queries, make predictions based upon current information and make

decisions based upon values.

The MSI architecture does not explicitly address the functions of behavior generation

or value judgment, but expects these to be embedded in the planners, the controllers, or

the guardian interface at the discretion of the implementor. MSI does not address

sensory processing at all, whereas RCS has made elaborate provisions for it.

Both RCS and MSI permit human intervention into the control system. In MSI this

intervention is tightly formalized, in RCS more implementation choice is given.

7.3.2.5 Collections of Controllers

Perhaps one of the greatest differences between MSI and RCS is the way in which

“atomic” entities can be combined. MSI permits any combination of scheduler/

controller units or controller/controller and scheduler/scheduler units to be combined

into a block which must exhibit appropriate interfaces. As shown in figures 8, 9, and

10, MSI permits controllers and their related planners to form separate hierarchies (in

fact planning is not necessarily hierarchical). RCS, on the other hand, requires certain

canonical ways of combining the functions together. It is assumed in RCS, for example,

that controllers and their related planners are always linked together, so there is always

a single control hierarchy.

73.2.6 Required Data and Data Handling

Both RCS and MSI have a requirement for information which describes aspects of the

environment and internal information about the control system.

A major difference between MSI and RCS is the way in which controllers expect to get

information from the environment. MSI expects that there are a great many relevant

environmental variables which have to be monitored and so proposes interrupt

mechanisms be available to inform the control system of important changes. Versions

of RCS vary in this aspect, but some versions require that environment variables be

sampled cyclically. The two mechanisms are fundamentally incompatible and a

resolution must be reached in order to build an architecture which accommodates both

types of controllers.

MSI expresses the data it requires in information models. Implementation of the data in

memory, databases, and files is not specified, although an (accessing) scope may be

defined. RCS has similar specifications for data at the servo and primitive hierarchical

levels, for specific classes of machinery. RCS has only sketchy suggestions for data

handling, but often says that the database should be global, and all data which is not

local must be globally accessible. MSI does not require that all non-local data be

globally accessible.
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MSI expects all data handled by the control system to be symbolic or numeric, and says

nothing about how such data should originate. RCS expects the control system to need

to process sensor data, and makes sensory processing one of the major focuses of the

architecture.

1 .32.1 Communications

MSI requires that the communications mechanism for status and command messages

be point to point and guarantee message delivery. The MAP and MMS communications

standards provide such services.

RCS does not specify a standard for communications but anticipates that at lower

hierarchical levels, fast communications will be required. In most implementations,

shared memory or some form of NIST’s Common Memory has been used.

Interestingly, NIST’s Common Memory can be made to provide point to point and

guaranteed message delivery, while MMS was designed to provide real-time data

delivery for controllers.

7 . 3 .2. 8 Task Generation and Execution

MSI and RCS have fundamentally different notions of how tasks are generated. MSI
assumes that all tasks originate as the execution of a plan which has been made in

advance (although it may be dynamically altered). MSI is designed to explicitly provide

for scheduling and allocating resources for tasks. Some versions of RCS assume that

the plan is constructed as it is executing, based upon the current states of the controller

and the task being worked on. Scheduling and resource allocation are not specifically

addressed. Both architectures permit adapting the plan during execution.

Both architectures postulate the existence of work elements, which are units ofwork for

a controller. RCS includes the semantics of these work elements within the architecture,

while MSI insists that the semantics of the work elements are in the domain of the

implementation.

Both architectures agree that task decomposition and the distribution of tasks among
members of the control hierarchy are desirable. RCS includes a number of specific

guidelines for task decomposition, MSI concludes that tasks should be decomposed

whenever an intermediate degree of coordination is desirable.

7. 3.2.9 Error Recovery

MSI makes error recovery one of the main facets of the architecture. MSI defines

sequences ofcommand and status messages to recover from scheduling errors, resource

failures, and task failures. RCS permits adaptive control but does not address other

errors explicitly.
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7.3.3 Conclusions and Compatibility Assessment

In this section we distill some key features of an architecture’s domain which affect the

architecture from the foregoing discussion and present general conclusions regarding

the compatibility of RCS and MSI.

7.3.3. 1 Key Features of a Domain

Several features of the domain to which a control system is intended to apply

profoundly influence the selection of appropriate components for the architecture of the

control system.

7.3.3. 1.1 Boolean Features

There are three features of a domain which make a qualitative, rather than a quantitative

difference in an architecture. There is no middle ground in providing for these features.

Either an architecture provides support or it does not. These are:

1. whether resource contention occurs.

If resource contention occurs, the architecture must make provisions for tracking

resource status and availability. The architecture must also include mechanisms for

different types of allocation and locking for resources. Being able to forecast

availability is also very desirable in such domains.

2. whether the control system must be able to respond in hard real time (i.e. a response

must be generated within a specific time slice).

If hard real-time response is required, the communications system and data access must

be geared to providing service within a specified time slice. As applied to software, the

hard real-time requirement means that it must be known in advance what code is to

execute and an upper bound must be available on the amount of time in which it

executes. In particular, the time which it takes to retrieve relevant data must have an

absolute upper bound. This argues strongly for limiting the amount of data which needs

to be accessed and disallowing ad hoc queries for information.

3. whether commercial systems whose internals may be unknown must be controlled

by the control system.

If inclusion of systems whose internals may be unknown is a driving force in an

architecture, then the architecture will avoid specifying the internals of the atomic units

which It defines and will concentrate on specifying the external functions, interfaces

and dynamic characteristics which the atomic unit displays.

7.3.3. 1.2 Continuous Features

In addition, there are a number of features of the domain which make quantitative

differences in the architecture. In the case of these features, there are differences in the

degree to which the architecture supports it. These are:

1. the variability of the physical environment in which the control system must

function.
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The more variable the environment, the more important current information about the

environment is. In such an environment, accurate updating of such information will be

a priority. In some cases, this will mean that sensory processing will be a priority.

2. the degree of structure of the physical environment in which the control system must

function.

In an environment which is unstructured, it may be impossible to generate even

tentative plans in advance, as the formulation of each step depends on current

conditions which cannot be known in advance. Such control systems typically use goals

to direct the generation of appropriate plans. For highly structured environments, likely

courses of action can be anticipated and encoded in plans in advance of execution.

3. the degree of integration with the organizational environment which the control

system must provide,

In some applications within the domain, the control system must be integrated with

other systems, such as business systems. In these cases, information interchange and

access control must be implemented for the integrated systems.

4. the degree to which the control system must be reliable and fault tolerant,

An architecture must provide for reliability and fault tolerance throughout. The

architecture must provide mechanisms for realizing when errors occur and for reporting

and resolving them. If an architecture is constructed assuming flawless operation and

data, it is difficult, if not impossible, to acquire the data to perform error recovery.

5. the degree to which the dynamic reconfiguration of the control system is supported.

An architecture may need to provide for changing the control hierarchy of a control

system. At one end of the flexibility spectrum, this may have to be accomplished by

halting the control system, reconfiguring it and restarting. At the other end of the

spectrum, the control system could be reconfigured without affecting most executing

tasks at all. If a great degree of flexibility is required, the architecture must provide for

managing the internal states of controllers and be capable of managing tasks in process.

7. 3.3.2 Conclusions

With regard to these key features, MSI provides for the inclusion of commercial

systems in an environment which is moderately variable and highly structured (the

factory floor). It provides a high degree of integration with other systems and permits

dynamic reconfiguration to correct for impaired equipment. The architecture contains

methods for handling resource contention. The MSI architecture specifically addresses

error recovery for resource problems, scheduling difficulties and task failure. RCS
provides for hard real-time control and operation in a range of environments, from the

highly structured to the highly unstructured, which may be highly variable. By
permitting sensor feedback and intelligent response, RCS provides for reliability and

fault tolerance in task execution.

It is clear that the MSI and RCS architectures are not perfectly compatible. However,

many of the differences are the result of differing domain requirements. MSI and RCS
strengths and weaknesses complement each other.
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8 Outline of Proposed Reference Architecture

This section discusses a proposed joint architecture which serves the purposes of (at

least) the NIST Factory Automation Systems Division (FASD) and Robot Systems

Division (RSD). The section presents generic recommendations for constructing any

reference architecture for control, discusses an approach for constructing a joint

architecture, and gives the outline for the contents of a specific proposed architecture.

It is planned that this feasibility report be followed by an effort to fully define a joint

architecture, an effort involving a larger group of people from RSD and FASD. The

architecture outlined here is intended as the starting point for that effort, but that group

will be not be bound by the outline given here. Appendix C contains many non-generic

recommendations addressed to that group.

8.1 Generic Recommendations

The authors have several recommendations to make which are independent of any

specific architecture. These generic recommendations are intended to apply to

developing a control system reference architecture in any domain.

8.1.1 Elements of Architectural Definition

All five elements of architectural definition (statement of scope and purpose, domain

analyses, architectural specification, methodology for architectural development, and

conformance criteria) should be given explicit consideration during the development of

an architecture. Architectural specifications (what it is) should be distinguished clearly

from methodologies for architectural development (how you build it).

It is the authors’ recommendation that all of these elements of architectural definition

be addressed in a balanced fashion. Failure to address all the elements of architectural

definition is a common oversight, which leads to an incomplete, inconsistent or

ambiguous architecture.

8.1.2 Tiers of Architectural Definition

An architecture should be divided explicitly into tiers of architectural definition and the

five elements of architectural definition should be clearly stated at each tier. Where a

range of options is intended by the developers of the architecture to be available to

implementors or refiners of the architecture, that should be handled explicitly at the

appropriate tier of architectural definition, not implicitly by being vague or silent.

8.1.3 Formal Languages

Formal languages should be used where appropriate. Where there is doubt about what

is appropriate, lean toward using a formal language; natural language can always be

used as an adjunct to a formal language. Formal languages are already universally used

at the lowest tier of architectural definition because computers do not deal well with

natural language.
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An obvious place to use formal language is in the expression of the models resulting

from domain analyses. Other places where formal language may be used are in the

architectural specification itself and in the conformance criteria.

8.2 Specific Recommendations

For the joint architecture, the authors have made a number of specific choices which are

high-level. These choices are outlined in the remainder of this section.

8.2.1 Scope and Purpose

The purpose of the joint architecture is to serve as a guideline for developing a control

system which is integrated with its environment and can perform real-time control of

system hardware where required. At each more specific tier of architectural definition,

the scope and purpose of the architecture is refined.

8.2.2 Tiers of Architectural Definition

The authors suggest that the architecture have four tiers of architectural definition. The

lowest tier consists of the implementations of the architecture, and will not be

discussed. The three upper tiers may be characterized as follows:

( 1 ) a domain-independent, application-independent tier (tier one),

(2) a domain-specific, application-independent tier (tier two),

(3) a domain-specific, application-specific tier (tier three).

The structure of the tiers of definition of the architecture is shown graphically in Figure

11 .

Note that while the first tier of architectural definition gives many of the guidelines

necessary to construct a control system, it is necessary to specify domain-specific and

application-specific items before constructing an implementation. In practice, many
architectures are specified only to this second tier of architectural definition, and the

implementor of the architecture must supply all the missing information as (s)he sees

fit

In Section 8.3, we discuss tier one and tier two of the joint architecture, addressing each

of the elements of architectural definition at each tier. These tiers are not fully defined.

Additional items of architectural specification are desirable at both tiers but have been

omitted, not from lack of ideas, but because none of the alternatives for these items is

clearly best. Tier three is not addressed in this document, as defining this tier requires

the selection of meaningful applications within the domain. At this point in the

development of the architecture, it is not clear what these applications should be.
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Figure 11. Proposed Architecture - Tiers of Architectural Definition
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8.2.3 Methodologies for Architectural Development

For the joint architecture, a methodology for architectural development for

transitioning from one tier of architectural definition to another will not be required as

part of conformance to tiers 1 and 2 of the architecture. However, when a methodology

is formulated, it may be included as advisory and required at tier 3 of the architecture.

Specific methods of specializing the architecture for a particular application (the

transition from tier 2 to tier 3 and from tier 3 to tier 4) are very likely to be useful and

may be required.

8.3 Outline of Proposed Architecture

The following sections give a discussion of the authors’ recommendations for the

construction of a joint RSD/FASD architecture at the first and second tiers of

architectural definition.

8.3.1 First Tier of Architectural Definition

This tier gives a domain-independent, application-independent architectural

specification. As required for each tier, scope and purpose, domain analyses,

architectural specification, methodology for architectural development, and

conformance criteria are all discussed.

8.3.1. 1 Scope and Purpose

The domain definition at this tier is intentionally broad. It is assumed that there is a need

for a control system, and that the system being controlled must interact with its

environment and react to unpredicted changes in the environment. No further

characteristics are assumed.

The control architecture proposed here is intended to give guidelines for the

construction of a general control system in this very broad domain. This architecture is

specifically intended to be applicable to control systems for factories, robots,

autonomous vehicles, construction machines, and mining machines.

8.3. 1.2 Domain Analysis

At this tier, it is important to create model(s) for the generation of plans, the

transformation of plans to tasks, and the assignment of tasks to resources. At this tier,

it is necessary to specify resources, plans and tasks genetically, as explicit information

about the domain is not present. The authors recommend that an analysis be made of

the types of representations appropriate for each of the planning paradigms specified.

It is also recommended that the control function be analyzed to reveal the necessary

functions. There is considerable applicable work to draw on in this area.

Finally, it is recommended that hierarchical task decomposition be a mandated strategy

and that a methodology of task decomposition (which is advisory only) be adopted.
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8 . 3 . 1 . 3 Architectural Specification

The architectural specification at this tier should contain the following:

(1) definition of basic architectural units and functional characterization,

(2) rules for interactions of basic architectural units,

(3) rules for combinations of basic architectural units,

(4) rules for interaction of the control system with humans,

(5) rules for stored data and access,

(6) identification of and explicit models for relevant domain-independent,

application-independent information,

(7) selection of paradigms for communications mechanisms.

In the following sections, we address each of these topics in turn.

8.3. 1.3.1 Atomic Units

The authors recommend that the basic architectural units of the joint architecture be

atomic units of the finest granularity possible and that the internals of architectural units

be invisible to the architecture. It is also recommended that atomic units have states, and

that these be capable of being externalized to aid in start-up, shutdown, reconfiguration,

and error recovery. Associated with each atomic unit is a set of functionality. In

addition to the atomic units, the architecture may include a number of architectural units

with the functionality of several atomic units combined together. Architectural units

with functionality that is a subset of the functionality of an atomic unit should not be

permitted.

8.3. 1.3.2 Interactions among Architectural Units

The authors recommend that the interface description of each architectural unit specify

the information, functionality, and dynamics of the interactions of the unit with other

architectural units. The interface should provide for error recovery and safety

considerations. Given that this is a domain-independent architectural tier, and all the

relevant information may not be known, it is not immediately clear the extent to which

this can be done.

8.3. 1.3.3 Combinations of Architectural Units

Attention must be paid to the way in which the architectural units, whether atomic or

not, can be combined. The architecture should define the interfaces and states of units

composed of more than one architectural unit, as well as interfaces and states of atomic

units.
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Note that, with the above definition of architectural units, it is no longer intuitively clear

what a ‘controller’ is. Certainly a controller should contain the task execution function,

as this is the most basic control function. However, by specifying how architectural

units can be combined, the joint architecture can identify a number of permitted

configurations which can be considered controllers in that architecture.

It is recommended that the architecture mandate that the task execution architectural

units be arranged in a strict hierarchy at any point in time, and that there be a command
and status interface between superiors and subordinates. Modifications to this rule can

be made for specific services at more detailed tiers of architectural definition, if

required.

Whether the other architectural units can have separate hierarchies, or whether links

between them must follow the ones established by the task execution architectural

units, must be addressed in the joint architecture. The authors’ recommendation is that

the formation of separate hierarchies which mirror that of the task execution hierarchy

be permitted. It is tempting to disallow fundamentally different hierarchies, owing to

the complication which allowing different hierarchies brings to the architecture, but

different hierarchies may be necessary. Sensory processing, in particular, may need to

have a hierarchy different from the control hierarchy.

In fact, the joint architecture should consider that a complex control system, which is

composed of more than one controller, may have a number of different types of

controllers. The authors strongly suggest that the joint architecture consider at least

three types of controllers: those capable of real-time control, those without this

restriction, and coordinating controllers, whose job it is to provide the coupling

between the two types.

Within each type of controller there should probably be conformance classes at tiers 3

and 4, based upon incompatible choices of various sorts. As examples we give the

following incompatible pairs: one type of controller may poll for information, while

another may be interrupt driven; one type of controller may queue commands while

another may disallow queueing; one type of controller may allow multiple

simultaneous tasks, and another may not. In the formulation of the joint architecture,

the focus should be on whether it is possible to include both types of controllers in the

same control system, rather than on which choice is better.

8.3. 1.3.4 Human Interaction with the Control System

It is recommended that a set of generic operations be constructed for the interface of

human or other intelligence to each of the architectural units. This interface should be

extensible at lower tiers of architectural definition. The interface should identify the

type of intervention possible with that unit. For example, a human operator should be

able to cause task execution to stop in an emergency. At lower tiers of architectural

definition, it will be necessary to decide when the interaction should be blocking or

non-blocking. The specification of the generic interface operations is not intended to
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preclude having specialized, task-specific human interfaces at lower tiers of

architectural definition. In some cases, the introduction of specialized interfaces will

introduce a lack of interoperability.

Human intervention will also be possible for both the information storage and access

systems and the communications system. Explicit rules for this interaction seem

unnecessary at this tier of architectural definition.

8.3. 1.3.5 Stored Data and Access

The architecture should place a minimum of restrictions on where data is stored

physically, but should indicate the scope of data (i.e., who has permission to access it).

The access of stored data need not use the same communications paradigm as the

command and status links.

8.3. 1 .3.6 Domain-Independent Information

A number of domain-independent models must be formulated at this tier. Primary of

these are models for expressing whatever plans are used by the controllers. It is

recommended that different controllers in the control hierarchy be permitted to have

different types of plans.

Catalogs of work elements should not be included in this tier of architectural definition

as they are domain-dependent at least and possibly even application-dependent.

Resources can only be described generally at this tier, but resource classes may be

defined. Controllers, planners, and other architectural units should be considered

resources and be in a separate class. Models of the characteristics of tasks, controllers,

and the relationships among tasks, controllers and plans should be generated.

8.3. 1.3.7 Communications Paradigms

In a single architecture, different communications mechanisms may be required for

different purposes. For example, one mechanism may be used to exchange command
and status information, while another may be used to get information from a shared

memory location. Note that even for a single purpose it is not necessary to have a single

communications mechanism. For example, it is entirely possible for some

communications to take place using a point to point mechanism, while the rest of the

communications are through another mechanism, such as a shared bus. In fact, the only

time that a communications system would be global is when communications may take

place between two parties where it was not known in advance what the two parties

would be. Such a situation occurs when synchronizing task execution. The joint

architecture should specify a global mechanism as previously described, and should

offer the implementor freedom in choosing the communications mechanism between

architectural units.
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8.3. 1.4

8.3. 1.5

8.3.2

8.3.2.

1

8. 3.2.2

8.3.2.3

Methodology For Architectural Development

A formal methodology for architectural development for going from this tier of

architectural definition to the next is not proposed. As stated earlier, it is planned that

the transition will be handled by a working group with members from RSD and FASD.

Conformance Criteria

At this tier, conformance should consist of complying with the general

recommendations, possessing the stated architectural units, supporting the defined

interfaces, and exhibiting the required information and process models. Again, note that

an architecture at this tier is not implementable without many additional assumptions

on the part of the implementor.

Second Tier of Architectural Definition

Given the dependence of an architecture upon the features of its domain, it is clear that

defining the domain of the joint architecture will have a profound effect upon the end

result. The authors recommend that the domain of the architecture at this tier be discrete

parts manufacturing. The authors believe that a good architecture in this domain will

use features of existing RSD and FASD architectures. A manufacturing architecture

will need hard real-time control, which RSD architectures handle well. Manufacturing

architectures also require a high degree of integration with their environment, which

MSI supports well.

Scope and Purpose

The manufacturing control architecture proposed here is intended to provide guidelines

for the construction of a control system which provides for real-time control of

manufacturing equipment and integration of the control system in the discrete parts

manufacturing environment.

Although the focus of the architecture is on the planning and production phases of the

operation of a shop, the scope should include some information from design,

management, business, and maintenance to ensure integration with these functions at a

later date.

Domain Analysis

At this tier of architectural definition, detailed models of the shop are required. Models

which should be included are models of shop configuration, shop physical layout, shop

networks, orders, resources, schedules, tools, processes, raw materials, and consumable

materials.

Architectural Specification

At this tier, the architectural specification should include the additional information

models specified above. The interfaces of the architectural units should be expanded to

include domain-specific information that needs to be exchanged and possibly

additional functionality demanded by integration with other systems.
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A catalog of work elements should be defined.

For manufacturing, it is definitely necessary to have the higher-level controllers be able

to function on a predefined schedule, as a shop is generally required to predict when
products will be ready.

It is highly recommended that the joint architecture propose a method for including

material handling systems.

8. 3.2.4 Methodology For Architectural Development

A methodology for architectural development should be developed at this tier for

helping build control systems for specific discrete parts manufacturing uses. Once the

methodology is agreed upon, it would be useful to build a CASE tool embodying the

methodology and architectural specifications to assist in building realizations of the

architecture at the next tier of architectural definition.

8.3.2.5 Conformance Criteria

Conformance criteria at this tier are entirely similar to those of tier 1.

95



Feasibility Study: Reference Architecture

9 Conclusion

9.1 Summary

This report began with the examination of architectural definitions, with an emphasis

on the definitions of control architectures. It collected a number of architecture issues

which it is critical for a control architecture to address and assessed the MSI and RCS
architectures against each issue. Finally, the report discussed the feasibility of building

a reference architecture for machine control systems integration and provided guidance

to the committee which is to construct the joint architecture.

9.1.1 Architecture Defined

Architecture was defined in Section 1 of this report as giving the design and structure

of a system.

The elements of architectural definition were identified in Section 3 as:

(1) statement of scope and purpose,

(2) domain analyses,

(3) architectural specification,

(4) methodology for architectural development, and

(5) conformance criteria.

In that section, also, the notion of tiers of architectural definition was presented and

explained.

9. 1 .2 Issues Discussed

Many architecture issues were discussed in Section 4 and Section 5. Section 4 focused

on generic architecture issues, while Section 5 focused on issues specific to control

architectures. The identification of the elements of architectural definition, and the

statement of the issues served as a framework for writing much of the rest of the report.

The authors believe this framework should be useful in the field of control architecture

research, independent of any consideration of MSI, RCS, or the proposed joint

architecture.

A few additional issues that have arisen in RCS discussions but were too narrowly

focused for Section 4 or Section 5 are given in Appendix F.

9. 1 .3 Architectures Presented

The RCS and MSI architectures were presented in Section 7.1 and Section 7.2,

respectively, with many details expanded in Appendix C. Section 6 presented several

other architectures, two of which are examined more closely in Appendix E.
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9.1.4 RCS and MSI Compared

An assessment of the compatibility of RCS and MSI was made in Section 7.3. The

assessment was based on a detailed comparison of the two architectures given in

Appendix C. The authors concluded that while MSI and RCS are not perfectly

compatible (and two control systems built conforming to the different architectures will

certainly not be interoperable), MSI and RCS strengths and weaknesses complement

each other, so that an architecture combining their strengths would be feasible and

desirable.

9.1.5 New Architecture Outlined

The outline of the contents of a proposed control architecture for (at least) RSD and

FASD was given in Section 8. The proposed architecture has four tiers of architectural

definition. The contents of tiers one (domain and application independent) and two

(focused on the domain of discrete parts manufacturing but independent of a specific

application) of the proposed architecture were outlined in moderate detail in that

section. The third (application-specific) tier and the bottom tier (a description of a

specific implementation) were not discussed in that section.

A manufacturing architecture needs both integration with the environment and real-

time control. These two goals work against each other, but hierarchical control is

ideally suited to resolving this conflict by permitting upper tiers to handle integration,

while lower tiers guarantee hard real-time control. The key to composing an adequate

architecture is determining which aspects of the architecture can be local, and which are

required to be global. The larger heterogeneous architectural units that satisfy local

goals can then be integrated together to compose a complete architecture.

9.2 Observations on Control System Architectures

9.2. 1 No “Best” Architecture

The authors conclude that there is no “best” architecture for control systems. The

conditions under which control systems must operate vary widely, leading to

correspondingly wide variation in the functionality required of control systems. No one

control system architecture is best in all cases, or even in a large proportion of cases.

An architecture which includes only the upper tiers of architectural definition will be

broadly applicable but will lack technical specifics needed to make implementations.

The higher tiers of architecture must be implicitly or explicitly specialized to a domain

and then an application before an implementation can be built. Depending on the tier,

an architecture may be relevant to a large number of situations.

9.2.2 Research Needed

Several different existing architectures show promise, and the field is open for the

development of new architectures. It is desirable, therefore, to continue research on

control architectures along many paths.
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Hierarchical architectures, such as RCS, MSI, and the new architecture proposed in this

report, have merit and should be pursued. Heterarchical architectures and the

subsumption architecture have much to recommend them, as well, and seem likely to

be superior in at least some situations. Research into these other architectures should

also be supported.

In the final analysis, the performance of a control architecture of an automated system

is a key determinant of its usefulness. A general shortcoming of current research on

control architectures is that aspects of system design are claimed to have been selected

to enhance some aspect of system performance, but it is not clearly demonstrated

(sometimes not at all) how the design aspect leads to enhanced performance.

Furthermore, little research has been done on how to measure the performance of

control architectures in various situations and few claims of architectural effectiveness

have been established. The authors recommend that more attention be paid to the

measurement of the effectiveness of control architectures, so that comparisons of

architectures can readily be made.

9.3 RSD/FASD Joint Architecture

The authors stress that completing the proposed architecture will require a great deal of

work. The proposed architecture goes beyond RCS and MSI. Completing it requires the

specification of many architectural components and their interactions on several tiers

of architectural definition and requires consideration of the relationship between

corresponding components at different tiers of architectural definition. However, the

end result will be an architecture which truly fills both the need for hard real-time

control and information integration, each at the appropriate tier.
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Appendix A - Glossary and Acronyms

A.l Glossary

analysis

an examination of the components of some complex system and how they relate to one

another.

application

a subset of a domain for an architecture.

architectural specification

a prescription of what the pieces (software, languages, execution models, controller

models, communications models, computer hardware, machinery, etc.) of an architecture

are, how they are connected (logically and physically), and how they interact.

architectural unit

an atomic unit or molecular unit that is recognized by an architecture.

architecture

the design and structure of a system. Typically, an architecture consists of a set of

components, together with specifications of how the components work together within the

system, and how they may interact with the environment outside of the system.

aspect

a cross-cutting view of an architecture from some specialized viewpoint, such as

information, communications, or control flow.

atomic unit

an architectural unit of an architecture which the architecture does not break down further

into simpler architectural units.

black box
a subsystem which is described only in terms of its inputs, outputs, and functionality, but

whose internal architecture is unspecified.

broadcast communications
a communications system style in which a communications entity sends messages out

over the communications medium without addressing the message to one or more specific

communications entities.

centralized control

a control method in which single controller (usually running on a single computer)

controls everything directly.

command
an instruction from a superior controller to a subordinate controller (or from a client

controller to a server controller) to carry out a task.
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command and status exchange
an exchange of messages between a superior (or client) controller and a subordinate (or

server) controller in which the superior tells the subordinate what is to be done by sending

a command and the subordinate sends a status message back.

command-and-status protocol

a specification of the messages which two interacting controllers exchange and the rules

by which they exchange them. There are two types of messages: those which are

commands and those which give the status of the execution of the commands.

component
an implementation of an architectural unit of an architecture.

conformance class

a set of architectures (or implementations) distinguished by a combination of features at a

tier of architectural definition. Different conformance classes may have different and

incompatible choices of features or may correspond to different degrees of conformance to

an architectural requirement.

conceptual data model
a description of a set of information, always giving relationships among the members of

the set, often including the data type of the members of the set, and often including some

of the semantic content of the information.

conformance criteria

criteria which specify how an architectural unit at one tier of an architecture conforms to

the architectural specifications of a higher tier, or how a process for building part of an

architecture conforms to the development methodology given by the architecture for

building that part

conformance test

a procedure that determines if conformance criteria have been met.

controller

the agent which directs the performance of or performs specific tasks.

cyclic development
development (of a control system, controller architecture, etc.), by doing an initial

implementation, assessing the finished product, and using the results of the assessment as

feedback for refining the system. The assessment and refinement may be repeated several

times.

domain
the class of situations for which an architecture is intended to be used.

domain analyses

analyses of the target domain of an architecture. Commonly used forms of domain

analysis are functional analysis, information analysis, and dynamic analysis.
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dynamic analysis

an analysis of the characteristics of the functions and information in a domain which vary

over time during control system operation. It provides qualitative and quantitative

information about the sequence, duration, and frequency of change in the functions and

information of the domain.

dynamic aspects

aspects of a control system which describe how the information and functioning of the

system vary over time.

dynamic reconfiguration

modifying the control hierarchy of a hierarchical control system while the system is

working.

element of architectural definition

a part of the definition of an architecture. The elements of architectural definition are:

statement of scope and purpose, domain analyses, architectural specification,

methodology for architectural development, and conformance criteria.

execution model
a logical view of how the execution of a control system is carried out.

functional analysis

an analysis of all the activities within the scope of an architecture which a conforming

control system is supposed to be able to perform.

functional aspects

aspects of a control system architecture which describe what a system conforming to the

architecture does.

goal

a state of affairs intended to be brought about Goals are such items as manufacturing a

part, moving a robot arm to a specific place, or navigating a vehicle from one point to

another.

granularity (of a tier of architectural definition of an architecture)

the size of the atomic units which the architectural specification of that tier addresses.

hard real-time (control system)

a control system in which a response must be generated within a fixed time interval.

heterarchical control architecture

a type of control system architecture in which each controller has no superior and no

subordinates, and controllers interact by issuing requests for bids, making bids, and

entering into contracts to do work.

hierarchical control architecture

a type of control system architecture in which controllers are arranged in a hierarchy, and

controllers interact through a command-and-status protocol.

112



Feasibility Study: Reference Architecture

implementation
the realization of an architecture in hardware and software.

information analysis

an analysis of all the information within the scope of an architecture needed for a

conforming control system to function properly.

information aspects

aspects of a control system architecture which describe the information required for the

operation of a system conforming to the architecture.

information modeling language

a formal language intended to be useful for representing information. Examples are

EXPRESS, NIAM, and IDEF1X.

interoperable (architectures)

two architectures such that a control system built according to the specifications of one

architecture can be used (possibly with minor modifications) in a control system built

conforming to the other architecture.

life cycle

the stages in the life of a system or product.

methodology for architectural development
a set of procedures for applying an architecture.

molecular unit

a combination of atomic units or smaller molecular units recognized by an architecture,

multicast communications
a communications system style in which a communications entity can send a given

message to several other known communications entities.

non-persistent data

data which is stored temporarily and which is lost when the system containing it is reset.

operational mode
a style of operation of a controller or control system. Operational modes might include, for

example: debugging (enabled vs. disabled), autonomy (automatic, shared control, or

manual), logging (enabled vs. disabled), single stepping (on vs. off).

operational state

the fitness for operating of a controller or control system. Operational states might include,

for example: down, idle, ready, active.

organizational extent (of an architecture)

the set of related activities of an organization covered by the architecture.

persistent data

data stored on a permanent medium such as files or databases.
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plan

a scheme developed to accomplish a specific goal.

planner
an agent which generates or selects plans to accomplish one or more goals.

planning

the activity of making plans. The plans may be process plans, production plans, schedules,

etc.

point to point communications
a communications system style in which a communications entity can send a given

message only to one other communications entity, i.e. communications occurs between

pairs of communications entities.

process

The term is commonly used in several senses. See discussion in Section 4.4.3.3.

process plan

a specification of the activities (possibly including alternatives) necessary to reach some

goal. A process plan serves as a template, or recipe. Process plans may be distinguished

from production plans and schedules, both of which are derived from process plans.

real-time

the condition that a system must keep pace with events in the environment.

reference architecture

a generic architecture for a specific domain.

resource allocation

assigning resources (temporarily or permanendy) for some specific purpose.

resource definition

a description of a resource, usually given in a formal information modeling language.

scheduler

an agent which performs scheduling.

scheduling

the assignment of specific resources and times.

scope

see statement of scope.

soft real-time

requiring real-time response, but not within a specific time interval.

statement of purpose
a statement that identifies what the objectives of an architecture are within the given

scope.
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statement of scope

a description of the range of areas to which an architecture is intended to be applied,

step (of a plan)

the basic unit of subdivision of the procedures section of a plan, usually specifying that a

single activity (single at some conceptual level) be carried out (drill a hole, deliver a tray,

machine a lot of parts, etc.).

submodule
an internal unit of an atomic unit of an architecture,

synchrony
a fixed relation in time between the execution cycles of two controllers.

task

a piece of work which achieves a specific goal - actual work, not a representation of work.

tier of architectural definition

a grouping of architectural units of similar concreteness.

work element
a generic representation of a type of work, such as moving in a straight line from one point

to another, opening a gripper, or drilling a hole.
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A.2 Acronyms

AcSL
ALPS
AMICE
AMRF
ARTICS
BG
CAD
CAM
CAM-I
CAPP
CASE
CEI
CIM
CIM-OSA
DOE
DOS
ESPRIT
EX
FASD
FIFO
GENISAS
GISC
IBM
ICAM
EDEFO
IDEF1X
IDEF2
IDEF3
IMDAS
I/O

ISO
IVHS
JA
LIFO
MAP
MEL
MMS
MSI
NASA
NASREM
NBS
NC

Activity Scripting Language

A Language for Process Specification

European CEM Architecture

Automated Manufacturing Research Facility

Architecture for Real-Time Intelligent Control Systems

Behavior Generation

Computer-Aided Design

Computer-Aided Manufacturing

Computer-Aided Manufacturing - International

Computer-Aided Process Planning

Computer-Aided Software Engineering

Control Entity Interface

Computer-Integrated Manufacturing

Computer Integrated Manufacturing - Open Systems Architecture

Department Of Energy
Disk Operating System

European Strategic Program for Research and Development in Information Technology

Execution

Factory Automation Systems Division

First In First Out

GENeral Interface for Supervisor And Subsystem

Generic Intelligent System Control

International Business Machines

Integrated Computer-Aided Manufacturing

ICAM DEFinition 0 (activity modeling technique)

ICAM DEFinition 1 extended (data modeling technique)

ICAM DEFinition 2 (simulation modeling technique)

ICAM DEFinition 3 (process description capture)

Integrated Manufacturing Data Administration System

Input/Output

International Organization for Standardization

Intelligent Vehicle-Highway System

Job Assignment

Last In First Out

Manufacturing Automation Protocol

Manufacturing Engineering Laboratory

Manufacturing Messaging Specification

Manufacturing Systems Integration

National Aeronautics and Space Administration

NASA/NBS Standard REference Model for Telerobot Control System Architecture

National Bureau of Standards

Numerically Controlled (or Numerical Control)
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NCL Neutral Command Language

NFS Network File System

NGC Next Generation Controller

NIAM Nijssen Information Analysis Methodology

NIST National Institute of Standards and Technology

OLPS Off-Line Programming System

OSI Open System Interconnection

PC Personal Computer

PL PLanning

RAMP Rapid Acquisition of Manufactured Parts

RCS Real-time Control System

RSD Robot Systems Division

SADT Structured Analysis and Design Technique

SDAI STEP Data Access Interface

SOSAS Specification for an Open System Architecture Standard

SP Sensory Processing

STEP STandard for the Exchange of Product Model Data

TBD To Be Done
TD Task Decomposition

USAF United States Air Force

VJ Value Judgment
WM World Modeling
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Appendix B - Summary of General Architecture and Control Issues

The following Appendix lists for quick reference the general architecture and control

issues discussed in the document without any accompanying discussion.

B.l General Architecture Issues

Which of the five basic elements of architectural definition be addressed? How much

emphasis should be placed on each one of them?

What dimensions of scope does the architecture address? For what domain is the

architecture intended? How much of the life-cycle of a control system should be

covered by the architecture? What aspects of an organization are covered by the

architecture?

How far from theory to implementation should a reference architecture go? How should

that continuum be divided?

What types of analysis should be performed on a domain in order to construct or apply

an architecture? What methodology should be used in performing the analyses?

What tiers of architectural definition should an architecture specify? What language or

languages are suitable for defining architectures at different tiers?

What degree of granularity is best at each tier of architectural definition? In an

architecture with several tiers of architectural definition, is it reasonable to have

granularity become finer at lower tiers of architectural definition?

Should a methodology of how to develop an architecture be specified? If so, what

should this be? Should a methodology on how to implement an architecture be

specified?

What architectural units should be specified? Should these units have standard

internals? Should they be black boxes? Which should be atomic units?

What types of interactions should be permitted between architectural units?

To what extent should an architecture specify the type of operating system used for

implementations?

To what extent should an architecture define the term “process”, the interaction

between operating systems and processes, and the role of processes in

implementations?

How should architectural components be mapped onto hardware and software? What
rules can be used for making this assignment?

How important is it that conformance criteria be included in an architecture? What sort

of conformance tests could be devised? Who would use conformance tests?
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Should the architecture allow for non-conformance of components? Should the

architecture define conformance classes with different degrees of conformance? Should

the architecture define different conformance classes for different, incompatible

choices of features?

What established standards can be used? What developing standards can be used?

When should the latest version of a developing standard be used?

Control Architecture Issues

Should the architecture specify how humans interact with the control system? Which

parts of the control system should the human be permitted to interact with? Which

aspects of the interactions between the components of a control system should the user

be permitted to alter?

What functionality should be included in a controller? What (if any) submodules should

a controller have? Should there be one submodule for each function? Which of these

submodules should be permitted to be independent communicating modules? What

should be the form and content of the communications among these submodules?

Should controllers have operational states? What should they be and what sequence

should be followed during start-up and shutdown?

Should controllers use blocking or non-blocking I/O? Should controllers use interrupts

or cyclic processing? Should sleeping processes with wake-ups be used?

Should controllers have operational modes? If so, what should they be?

Should the internal workings of the controllers in a control system follow some
standard or paradigm?

Should control entities have the capability to put commands received in queues?

Should a controller have the capability to carry on more than one task at a time? If so,

how should the controller determine what resources are required for each task and how
any shared resources should be allocated?

Should the user be permitted to direct that a controller perform a specific task? If so,

how should a user introduce a task to the controller?

Should there be a default set of operations possible from the human interface?

Should a default human interface be defined?

Should situation-specific human interfaces be allowed?

How should controllers that need to work together do so? What should be the criteria

for grouping controllers together? Should the interaction of controllers be direct (via

command-and-status), indirect (via shared data), or a combination of both?

Is it desirable to mix hierarchical and client-server models? How can this be done, if so?

Should a controller be able to control both other controllers and equipment, or just one

or the other?
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What sort of synchrony, if any, should be required of a grouping of controllers? Should

the same type of synchrony be required for every grouping, or should different options

be maintained?

What response requirements do implementations of the architecture need to satisfy?

What is the need for a system-wide clock? What is accomplished by maintaining

various levels of accuracy? How can a system-wide clock be used to maintain

synchrony?

To what model(s) of task generation and execution does the architecture subscribe?

Should a control architecture specify the command and status exchange between

controllers? If so, how detailed should this specification be? Should it specify the

semantics of the exchange, the format of the exchange, the encoding of the exchange?

How should task coordination be accomplished? Should the information for

coordination be in the work element, in the plan for a task (if one exists), or in some

other part of the control system?

At what level of abstraction should information be modeled by the architecture? What
information should be specified by the architecture? What data should be required to be

used and generated by architectural components? Should the specification of such data

be conceptual, logical, physical or some combination of the three? Should data storage

and/or data access mechanisms be specified by the architecture? How should data be

physically distributed in a system? How should data be accessed and by whom should

it be accessed?

What types of plans should be included in the architecture? What types of information

should a plan contain? What plan format(s) should be used?

Should the architecture include formal resource definitions? In the definitions of

resources in the architecture, are the ways in which the resources are used specified?

Should dynamic characteristics of the resource be included with its description? Are

there types of resources which share characteristics? If so, how should they be

categorized.

To what extent should the architecture require plans to be generated in advance, as

opposed to deciding what to do in real time? If plans are generated in advance of then-

use, should the resource allocation for the plans and the scheduling of the plans be done

at the same time as the plan generation, or can these activities be performed later using

a skeletal plan which refers to resource classes? Can these modes be mixed effectively?

If so, what requirements does this place on the control structure?

How should scheduling be handled?

Is support needed for resource allocation? If so, what types are provided for?

To what extent should the architecture deal with communications? Should the

architecture specify the communications paradigm, the communications

implementation? Should one communications scheme be required for all portions of the
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architecture, or can multiple schemes be used? What types of communications should

the architecture allow? How should communications between architectural units be

handled?

To what extent should checks and safeguards be built into an architecture? Are the

safeguards outside the basic architecture or an integral part of it? To what extent is the

ability to recover from errors in each major subsystem (e.g. communications, groups of

controllers, data system) built into the architecture? What mechanisms does the

architecture permit or require for handling cross-system errors? What feedback

mechanisms for fine tuning control system operation does the architecture permit?
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Appendix C - Issue Analysis and Comparison of RCS and MSI

This appendix gives an issue-by-issue analysis of the RCS (Real-Time Control System)

architecture developed in the Robot Systems Division, and the MSI (Manufacturing

Systems Integration) architecture developed in the Factory Automation Systems

Division, using the issues raised in Section 4 and Section 5 of this report. The

subsections of this section are in exactly the order in which the issues are presented in

Section 4 and Section 5. Page references are included to make it easy to refer back to

the issues.

The analysis is preceded by introductory comments about the two architectures and the

papers describing them. The two architectures differ greatly in the numbers of papers

written about them. Both MSI and RCS are founded on the work in manufacturing

control systems performed in the Automated Manufacturing Research Facility (AMRF)

at NIST. RCS has been under development for over a decade under the auspices of a

number of projects. There are dozens of papers about or involving RCS. In contrast, the

MSI architecture has been under development for only three years. Papers describing

the initial version the architecture have been published, but papers describing the

current version of the architecture are in the process of being written. Thus, the RCS
discussions include many citations to RCS papers, while the MSI discussions include

few.

For each issue we present where RCS and MSI stand, and we give comments on the

compatibility of the two positions. The RCS positions are high-level positions, not the

positions taken in individual applications of RCS. In the comments, we use the term

“joint architecture” to refer to the architecture the two Divisions plan to build to

subsume or supercede RCS and MSI. Some of the comments include suggestions

regarding the joint architecture.

For several issues, RCS or MSI is silent on the issue. In these cases RCS and MSI are

described as being compatible; the authors are aware that this is a very weak form of

compatibility. In particular, where RCS is silent at a high level on an issue addressed

by MSI, individual RCS implementations are likely to have either done nothing (i.e.

implemented silence) or developed a point solution, and either is almost certainly

incompatible with MSI.

The level of the outline at which RCS and MSI are compared varies in this appendix. If

an issue has independent subissues, RCS and MSI are broken out at the subissue level.

If the subissues of an issue are closely related, RCS and MSI are broken out at the issue

level.

This appendix has two primary intents: first, to provide the details that support the more

general discussion of the compatibility of RCS and MSI that appears in Section 7,

second, to provide guidance for the joint architecture described in Section 8. Two
secondary intents are to provide an issue-by-issue index into the contents of the RCS
papers and to provide a detailed description of the MSI architecture.
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C.l RCS Introduction

Where different RCS papers represent different positions on an issue, we have tried to

include all positions. In this appendix, by “the RCS papers” we mean the 40 papers

about RCS which were reviewed for this report and are covered in Appendix D.

C.1.1 Characterization of the RCS Papers

The RCS papers may be grouped as follows. The definition of the groups and the

assignment of a given paper to a group are not clear-cut, and the reader should not

imagine that this the only way it might be done.

(1) pre-NASREM RCS - theory and implementations

[Leake 1], [Murphy 1], [Wavering2]

(2) NASREM & NASREM-like RCS - theory, issues, implementations

[Albusl], [AlbusS], [Albus7], [Albus8], [AlbuslO], [Fialal], [Fiala2],

[FialaS], [Fiala4], [Hermanl], [Herman2], [HermanS], [Kramerl], [Lumial],

[Lumia2], [Lumia3], [Michaloski3], [Szabo2], [Szabo3], [Szabo4],

[SzaboS], [Wavering 1]

(3) Post-NASREM RCS - (NASREM with value judgment)

[A!bus2], [Albus4], [Albusti], [Huangl], [Michaloskil],

(4) ARTXCS RCS
[AlbusS], [Albus9], [Albusl 1]

(5) Barbera RCS
[Feldman 1], [Horst 1], [Quintero3]

(6) Other

[Michaloski2], [Quintero 1], [Quintero2], [Szabol]

The NASREM papers are hard to classify as application-dependent or application-

independent because:

(1) some emphasize NASREM as an architecture for the specific application for

which it was designed, space station robotics - [Albus5], for example,

(2) some (without any change in the upper tiers of architectural definition of the

architecture) emphasize the application-independence of the NASREM
architecture, while acknowledging its original intent - [Lumial], [Lumia2],

[LumiaSj, for example, and

(3) some emphasize the applicability for a different specific application of an

architecture which is identical to NASREM at the upper tiers of architectural

definition but which changes at the application-specific tier - [Albus?], which

is about coal mining, for example.

The ARTXCS (Architecture for Real-Time Intelligent Control Systems) papers are

appeals to the community concerned with real-time machine control to get together and

agree on an open systems reference model. In these papers, RCS is presented as a

proposed starting point or strawman for the reference model.
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Several of the papers listed above ([Fiala3], for example) discuss implementation

details (mostly details of control systems for robots) and assume an RCS architecture,

but barely mention RCS. Many other such papers exist which have not been reviewed

for this report. The authors felt it was important to read a sampling of such papers but

not necessary to read all of them.

C. 1 .2 Preliminary Observations about RCS

RCS does not fit fully with the definition of an architecture adopted in this report.

Rather than distinguishing between architectural specifications and methodologies for

architectural development, RCS lumps them together. Rather than having firm rules for

building control systems, RCS has soft rules often called “tenets”, “principles”, or

“canons”.

There are no explicit tiers of architectural definition in RCS. As already discussed,

however, RCS fits a model with three layers below the top.

In RCS, a conscious effort has been made to make the architecture broadly applicable.

As stated in [Albus2 page 59]:

The evolution of the RCS concept has been driven by an effort to include in a

single reference model architecture the bestproperties and capabilities ofmost,

if not all, the intelligent control systems currently known in the literature,from
subsumption to Soar,from blackboards to object-orientedprogramming.

A reference model architecture ... is a canonical form, not a system design

specification. A canonicalform does notforce anything. It simply structures the

problem so that designers can understand what they are attempting to do.

As a result of making the RCS architecture broadly applicable, it is often hard to

determine from the RCS papers what is acceptable and what is not under RCS.

C.2 MSI Introduction

The definitive MSI architecture paper has not been written. Hence, all statements about

the architecture written here represent the author’s perspective on the current version of

MSI.

C.2.1 MSI Architectural Definition

The MSI architecture is most directly applicable to the domain of discrete parts

manufacturing. Some concepts may extend beyond this domain, but which concepts are

portable is not made explicit. The goal of the architecture is to enable flexible

integration of manufacturing systems. As a consequence, the MSI architecture focuses

on defining expected functionality and interfaces of the architectural units, rather than

their internals. With this type of specification, it is possible to include black box

components which were not originally designed to be part of an MSI system.
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MSI has three tiers of architectural definition. The first is concerned with broad

architecture issues such as what control structures to use, communications paradigm to

use, and acceptable paradigms for data access; the second is composed of the detailed

specification of the interaction between architectural components and the information

models; the third tier is an implementation of the architecture. The MSI architecture

intentionally leaves quite a few implementation choices. Many of these choices are

explicitly delineated in the specification.

At the first tier of architectural definition, MSI does not explicitly state how an

architecture should conform to it. At the second tier, MSI requires that components be

able to interpret the relevant portion of the information model and requires that

controllers and schedulers have the interfaces specified in the architecture. In the

model, it has not been made explicit which portions are applicable, therefore the

implementation has considerable leeway in the interpretation of this requirement. The

interfaces include the specification of information which must be exchanged, and

dynamic behavior. The expected functional aspects of each component are outlined, but

the component complies if it exhibits the interface, even if does not actually perform all

the functions.

C.2.2 Preliminary Observations about MSI

The MSI architecture is designed to promote the effective integration of a

manufacturing system. As a consequence, great attention has been given to the

functional and information requirements for integration. The MSI architecture does not

address issues of hard real-time control of equipment. The architecture is designed so

that controllers which are capable ofproviding such control can be interfaced to an MSI
controller and included in the control hierarchy.

The MSI architecture committee views architectural development as a cyclic process in

which each implementation provides feedback to be included in the next version of the

architecture. The MSI architecture presented here includes the result of the first

implementation.

C.3 Balance Among Elements of Architectural Definition

This issue is discussed in Section 4.1 on page 13.

C.3.1 RCS

Discussions of the components of RCS given previously may be summarized as

follows:

(1) Scope: RCS papers omit two of the three dimensions of scope (see Section

4.2 on page 13). The discussion of domain is generally vague.

(2) Domain Analyses: RCS papers report a lot of functional analyses and some

dynamic analyses (in natural language) but no information analyses above

the computer language level. RCS papers report no use of formal domain

analysis methodologies.
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(3) Architectural Specification: RCS papers place heavy emphasis on

architectural specifications and methodology for architectural development

These two components are not differentiated, however, and there is almost no

explicit recognition of the need for tiers of architectural definition.

(4) Methodology For Architectural Development: See previous bullet.

(5) Conformance Criteria: The idea of conformance criteria is discussed briefly

in a few RCS papers, but no actual criteria are given in any papers.

The authors agree with the notion embodied in RCS that architectural specifications

and methodology for architectural development are the two most important

components of an architecture, but conclude that the components of RCS are not well-

balanced.

C.3.2 MSI

At the highest tier of architectural definition in MSI, the emphasis was placed on the

domain analysis and the middle tier of architectural specification. The MSI architecture

specifically constrained implementations as little as possible while still achieving

integration.

C.3.3 Comments

Any joint architecture should be balanced consciously. Scope and conformance criteria

could use more attention than given by RCS or MSI.

C.4 Scope Issues

This issue is discussed in Section 4.2 on page 13.

C.4.1 RCS

The intended scope of RCS and the domain of RCS may be characterized along the

dimensions identified earlier: domain, life cycle, organizational extent, and tiers of

architectural definition.

At the top (application independent) tier, the scope and purpose of RCS are presented

informally and generally in several RCS papers. The texts of these papers generally

provide examples of situations to which the architecture is intended to be applicable,

but not a precise definition of scope. The introductions to the ARTICS papers, for

example, say ARTICS should focus on “real-time, sensory-interactive, intelligent

machine control systems” (or very similar phrases), without being more specific

[Albus3], [Albus9], [Albusll]
22

.

22. [Albusl 1] is a straightforward condensation of [Albus9]. From this point on in the appendix, we omit

references to [Albusll]. Anywhere there is a reference to [Albus9], it may be assumed that [Albusll] says

roughly the same thing.
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C.4.1.1 Domain

The application-independent RCS papers generally say RCS is suitable for a broad

domain in which discrete operations are performed. Specific applications RSD has tried

are listed in Section 7.1.1. RCS papers do not specifically exclude any applications

except for continuous processes like oil refining.

C.4.1.2 Life Cycle

RCS has not been described in the context of commercial products, but rather in the

context of performing tasks. Life cycle considerations are not explicit in any RCS
papers. The part of the life cycle described in Section 4.2.2 that seems implicit in RCS
is design, manufacturing (of a prototype), and the testing and operation portions of use.

C.4.1.3 Organizational Extent

The RCS papers generally cover only operations (shop floor operations in the case of

manufacturing or shipboard navigation operations in the case of submarines, for

example). Other parts of the organization that are closely related and might be

considered (the design engineering department for manufacturing or the maintenance

and repair department for a submarine, for example) are generally not considered.

C.4. 1 .4 Tiers of Architectural Definition

Only a few RCS papers deal with the issue of tiers of architectural definition, and those

papers do not use that term (or even the identical concept) [Albus8, abstract], [Fialal,

section “Specification” at end], [Lumia2, section 1], [Michaloskil, section 2.1]. Most

RCS papers, however, are consistent with an architecture containing three tiers of

architectural definition below the top, as exemplified in Table 1 on page 9 of this report.

[Albus8, abstract] splits the lowest tier into two: software architecture and hardware

architecture.

C.4.2 MSI

The MSI architecture explicitly applies to discrete parts manufacturing.

MSI is primarily concerned with the operation aspect of the life cycle described in

Section 4.2.2, although stubs are provided for design, and maintenance.

With respect to organizational extent, MSI covers planning, scheduling, and

production. Rudimentary business considerations are within the scope of MSI. For

example, the concept of order is included and the notion of the cost of part production,

and inventory is in place. Such concepts provide the connection between the business

and technical sides of manufacturing but do not adequately deal with the business

aspect of manufacturing.
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C.4.3

The MSI architecture is intended to support the closed-loop control of soft real-time

applications where the computation time of the computer systems involved is negligible

in comparison to the response time expected in the manufacturing environment. The

MSI architecture assumes that for hard real-time systems, a control system designed for

this purpose which exhibited the required MSI interfaces would be employed.

Comments

On the domain axis, MSI is limited to manufacturing while RCS is intended to include

manufacturing and many other uses. RCS explicitly handles hard real-time control,

while MSI explicitly does not.

On the organizational extent axis, both MSI and RCS concentrate on operations and say

little or nothing about other parts of the organization. MSI does more than RCS.

MSI addresses the life cycle axis by providing hooks where a life cycle model

developed elsewhere may be included.

In summary, the two architectures have somewhat different scopes, but there is a large

area of overlap. It would not be difficult to define a slightly larger scope for a joint

architecture that includes both. At the top tier of architectural definition, the scope

would be broad and cover what RCS and MSI currently cover. At an intermediate tier

of architectural definition, above the application-dependent tier, it may be useful to

define two separate architectures, both of which conform to the top tier, such that the

scope of one includes the applications currently handled by RCS, and the scope of the

other includes the applications currently handled by MSI. A complete architecture for

manufacturing must include both the integration with the information and scheduling

systems of the factory, and provisions for hard and soft real-time control of the machine

tools and robots within it.

C.5 Domain Analysis Issues

This issue is discussed in Section 4.3 on page 14.

C.5.1 RCS

C.5.1.1 Aspects Covered

C.5 .L 1. 1 Functional Aspects

The majority of the RCS papers cover functional aspects in great detail (so we do not

cite them here). The details are summarized in Section 7.1.

C.5. 1 . 1 .2 Information Aspects

Information Descriptions
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At the middle tier of architectural definition, several papers (as cited in Section C.16.1)

recommend the use of particular types of data, such as maps, frames [Michaloskil], and

lists. At the lowest tier, each implementation, of necessity, handles the information it

needs. A few papers about RCS implementations (as cited in Section C.16.1. 1.1) give

details about the information required in the implementation.

Data Handling

This is discussed in Section C. 16.2.1.

C.5. 1.1.3 Dynamic Aspects

Dynamic Reconfiguration

Several high-level RCS papers say that RCS systems should be dynamically

reconfigurable, in the sense that the controller hierarchy should be modifiable by

adding or removing controllers while the system is operating [Albus4, page 203],

[AlbusS, section 1.3], [Albus6, page 4], [Michaloskil, sections 2.3.4, 3.2.6],

[Quintero3, section 3.2]. None of these, however, describes any formal procedure for

accomplishing dynamic reconfiguration.

None of the RCS papers describing implementations of RCS describes any

implementation of dynamic reconfiguration. Two papers describing implementation

details say that dynamic creation of processes (one method of implementing dynamic

reconfiguration) is to be avoided [Michaloskil, section 3] [Michaloski2, section 2.0].

In [Wavering2, section XI.2.3], three gripper controllers were kept in the hierarchy at all

times, although only one gripper could be used at a time. The control system had the

ability to let processes sleep when not in active use, to avoid wasting computational

resources. Although that paper did not discuss dynamic configuration directly, the

method used for dealing with three grippers avoided dynamic reconfiguration in a

situation where it could have been used.

Start-up and Shutdown

Two of the papers about RCS applications give detailed explanations of how to start a

specific control system up and shut it down [Leake 1, sections 6.1, 6.11], [Murphy 1,

appendix B]. There are no discussions in any of the RCS papers of a general approach

to start-up and shutdown.

Hard Real-time Performance

One major thrust of RCS (my first name is Real-Time) is the achievement of real-time

performance. As may be expected, many RCS papers deal explicitly with the issue

[Albusl throughout], [Albus3, section “Real-time and Temporal Reasoning”], [Albus8,

section “Software Development Environment], [Albus9, section 3.4], [Fiala2,

throughout], [Fiala4, sections 6, 8.3], [Herman 1, section 9], [Herman2, sections 4.2 -

4.5], [Herman3, section 6], [Horst 1, section 3.10 and other], [Leake 1, section 3.1],

[Michaloskil, sections 3.3.3, 5.2], [Michaloski2, most], [Michaloski3, most],

[Quintero3, sections 3.8.6, 3.9.1] [Waveringl, section 9], {Wavering2, section IV]. In
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addition, many other papers talk about measuring “performance” without explicitly

saying that one very important measure of performance is whether the control system

can run in real time, even though it is apparent that this is assumed.

C.5. 1 .2 Analysis Methodology

In the “Summary of the RCS Methodology Steps” given in [Quintero3, section 6], steps

are suggested in natural language for gathering domain knowledge and developing the

problem description, but no formal activity analysis methods (such as IDEFO or SADT)

or methods for functional analysis are mentioned in any of the RCS papers.

Little is said in the RCS papers about techniques for analyzing the information aspects

of a control system.

C.5.2 MSI

In formulating the MSI architecture, the MSI committee performed formal information

analyses. The results of these modeling efforts are a number of information models in

NIAM concerning the information required by control, planning and scheduling, and

other systems. These information models will be discussed elsewhere in this report.

An activity analysis of the process of converting orders to production plans was also

made. This information was not explicitly modeled in a formal activity modeling

language, but has affected the information models and other aspects of the architecture.

Informal analyses of the function and dynamics of a number of processes in the

manufacturing environment were made. Functional aspects of each architectural unit

were described, although the degree of detail varies. One of the more detailed analyses

made was of the way in which a scheduler, human, and controller interact in order to

implement error handling. The results of this analysis are expressed in the specification

for the interfaces of controllers and schedulers. This specification reflects conclusions

formed by the construction of numerous scenarios of normal and error situations.

Dynamic aspects of the exchange of command and status information are included.

The dynamics of information access has also been included for some of the information

(such as plans). A sequence for start-up, shutdown, and reconfiguration of the control

hierarchy is described, as are mechanisms for triggering reconsideration of important

pieces of information, such as resource availabilities.

C.5.3 Comments

RCS and MSI both include functional aspects. Neither architecture provides formal

functional analysis techniques. Many other sections of this appendix discuss specific

functional aspects.

MSI does much more than RCS in formalizing the information aspects of a control

system. These formal techniques are essential for making MSI work and could be

expected to provided significant improvements in RCS implementations. RCS is

compatible with the MSI formalisms, so MSI’s formal techniques for information could

be included in a joint architecture in a straightforward way.
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Dynamic reconfiguration is included in principle in RCS and MSI. There is no theory

of how to accomplish dynamic reconfiguration in RCS, and none of the RCS papers

report doing it in practice. There is some dynamic reconfiguration theory in MSI, and

specific provisions for how to implement it. Although MSI allows for dynamically

including or excluding specific controllers, this is intended to accommodate error

recovery and maintenance operations. An architecture that included specific methods

for dynamic reconfiguration and covered more types than MSI could be defined in

principle, but the authors believe that actually defining such an architecture would be

quite difficult. Covering dynamic reconfiguration in a joint architecture should be

regarded as desirable but optional.

C.6 Architectural Specification Issues

C.6.1 Granularity

This issue is discussed in Section 4.4.1 on page 16. It is suggested the reader review that

section before continuing with this one.

C.6.1. 1 RCS

The degree of granularity that should be part of the definition of RCS does not seem to

be resolved.

M
r

#
*

H
H

K

Although none of the RCS papers use the term “granularity”, four of them discuss

atomic units [Fialal, section 1], [Fiala2 all], [Quinterol, issue ME0002], [QuinteroS,

sections 1.3, 3.6]. Several others either state the intended size of “modules” whose

interface with other modules is intended to be part of the architecture or provide

examples of the size of modules or atomic units. Recalling that an RCS controller

includes sensory processing (SP), world modeling (WM), behavior generation (BG),

and value judgment (VJ), and that behavior generation may be decomposed into job

assignment (JA), planning (PL) and execution (EX), the RCS papers suggest (by

statement or example) three different sizes of atomic unit:

(1) controller is atomic unit: [Horst 1], [Quintero3, sections 1.3, 3.6]

(2) SP, WM, BG, and VJ are atomic units: [Albus4, page 202], [AlbusS, section

4], [AlbusT, section 4]

(3) JA, PL, and EX are atomic units: [AlbusS, figure 4], [Fiala4], [Lumia2],

[Wavering 1]

Finally, [Fialal, section 1] suggests explicitly that JA, PL, and EX are atomic units

which decompose BG, butWM and SP should not be decomposed. The same notion is

implicit in most of the RCS papers which have JA, PL, and EX as atomic units

C.6. 1.2 MSI

The MSI architecture has definitions of atomic units for planners and controllers. These

atomic units can be composed in a variety of ways which expose (or do not expose)

some of the defined interfaces. For example, if a unit is constructed which performs
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both the planner and controller functions, the combined control entity does not expose

the planner-controller interface. Thus the planner-controller interface does not need to

conform to the MSI specification, but the planner/controller must still exhibit the

required interfaces to its superior planner, superior controller, subordinate planner,

subordinate controller, planner-guardian and controller-guardian. Conglomerations of

any number of the planner and controller atomic units are permitted, so long as the

exposed interfaces are preserved.

C.6.1.3 Comments

Any joint architecture must be clear about what its atomic units are and how they can

combine and interact with other components, what its molecular units are and how they

can combine and interact with other components, etc. This issue will require significant

discussion in the formulation of a joint architecture.

C.6.2 Architecture Definition Languages

This issue is discussed in Section 4.4.2 on page 17.

C.6.2. 1 RCS

Upper Tiers ofArchitectural Definition

Natural language (English) is used in all RCS papers for describing the upper tiers of

architectural definition, except [Kramerl], which defines a portion of the NASREM
architecture in EXPRESS. No use is made of IDEFO, IDEF1, NLAM, or SADT. A little

use of DeMarco notation appears in [Michaloski2]. There are no formal models of

information in RCS implementations above the bottom tier of architectural definition.

In natural language, several different types of definitions are possible. In the case of

nouns, one type of definition is given to provide a good general idea of what the

meaning is; this may include brief descriptions, synonyms, and examples; dictionary

definitions are usually of this type. Another type of definition is given for the purpose

of classification - being able to determine whether something is or is not an instance of

the particular noun. The second kind of definition usually requires enumeration of

specific attributes and behavioral characteristics of things which are instances of the

noun. Natural language definitions in the RCS papers are almost entirely of the first

type. As a result, RCS is very loosely defined, and it is often hard to say whether some

aspect of a particular control system conforms to RCS or does not.

Bottom Tier ofArchitectural Definition

To the extent that data structure definitions in a computer language can be termed

formal information models, there are information models at the lowest tier of RCS
implementations. Implementations of RCS have used C, C++, FORTH, SMACRO,
Ada, and other languages.
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C.6.2.2 MSI

MSI is expressed in natural language, NIAM and EXPRESS. Implementations of MSI
have been built using C, C++ and LISP.

C.6.2.3 Comments

Any joint architecture should use formal languages, where appropriate, to avoid the

ambiguities of natural language.

C.6.3 Issues at the Lowest Tier of Architectural Definition

C.6.3.1 Hardware

This issue is discussed in Section 4.4.3. 1 on page 19.

C.6.3.1. 1 RCS

The upper tiers of architectural definition of RCS do not specify computer or

communications hardware or even any performance characteristics of the hardware,

other than being able to perform in real time.

Computer Hardware

RCS implementations have been developed using many different computers, including

VME backplane systems and 680x0 computers. Sun workstations, IBM PC’s (and PC
clones), Apple Macintosh, Silicon Graphics Iris, and others. VME bus is used

extensively.

Communications Hardware

Standard communications hardware, such as ethemet or RS232 cables and processors

are reported in the RCS papers for when interfacing components need to communicate

and are not part of the same process or using shared memory on a bus. For mobility

applications, radio frequency communications hardware is also used.

C.6.3. 1.2 MSI

The MSI architecture is hardware independent. However, the architecture assumes that

the facilities for shared file access and for communications between processes exist. If

data systems are available (for databases, memories, whatever storage mechanism is

chosen by the implementation) which can retrieve information from physical storage

based upon the location of that information in the conceptual schema, information

access can be made independent of physical location. The implementation is free to

place some of the information in local memory, some in databases and some in files.

Due to the way in which the Control Entity interface works, however, plans must be

maintained in a database (so that one entity could be changing part of the plan while

another entity is accessing and possibly changing another part of it), if full functionality

is to be achieved.
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C.6.3.1.3

C.6.3.2

C.6.3.2.1

C.6.3.2.2

C.6.3.2.3

C.6.3.3

C.6.3.3.1

The MSI architecture requires that command and status communications between

controllers (and schedulers) be performed using a point to point, guaranteed delivery

message service, such as provided by the MAP and MMS communications standards.

Comments

RCS and MSI seem incompatible here, because MSI requires a particular logical

communications protocol while RCS does not and MSI requires that plans be

maintained in a database while RCS does not.

Operating System

This issue is discussed in Section 4.4.3.2 on page 19.

RCS

RCS does not require the use of any specific operating system. RCS has been

implemented using several different operating systems, including pSOS, VxWorks,
GRAMPS, DOS, Lynx OS, and UNIX. The support of hard real-time processing

requires that the operating system permit the user to assume control of the multitasking

to permit processes undivided use of the computer resources for a specified amount of

time. While the RCS papers do not report any operating systems built in source code

for a particular application, they do mention the constraints which hard real-time

processing puts on the operating system.

MSI

The MSI architecture does not specify an operating system.

Comments

RCS and MSI are compatible here. Note that, in a distributed control system, all

controllers need not run on the same processor and therefore, need not use the same

operating system.

Processes

This issue is discussed in Section 4.4.3.3 on page 19.

RCS

The definition of what a process is varies among RCS implementations. The issue of

how a process should be defined is addressed directly in [Fialal, section 2], [Fiala2,

section 4], [Michaloskil, sections 3.2.1, 5.2], [Michaloski2, most], [Michaloski3,

most], [Quintero 1, issue ME0007], and [Wavering2, section II.2.2], In addition, many
other RCS papers refer in passing to processes. All of the notions of process described

in section 4.4.2.3 may be found in some RCS implementation.
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C.6.3.3.2 MSI

The definition of process is not an issue for the MSI architecture, the implementation is

given complete freedom in determining how many processes a component may be

made of. However, since the communications model is point to point, the

communications system is aware of the distribution. Therefore one specific process

must do the communications for each MSI planner or controller.

C.6.3.3.3 Comments

C.7

C.7.1

In any joint architecture, terms like “process”, if they are used, must be carefully and

unambiguously defined. The salient characteristics of a process must be specified - such

as (and this is only an example, not a recommendation): a process and only a process

can serve as a “point” in a point to point communications model. The issue of what a

process is, and what restrictions should be made on processes will need to be resolved

when a joint architecture is formulated.

Methodology For Architectural Development Issues

Cyclic Development

This issue is discussed in Section 4.5.1 on page 20.

C.7. LI RCS

[Quintero3, section 6] explicitly recommends that control system development be done

cyclically. Other RCS papers are not explicit, but several seem implicitly to endorse

cyclic development.

C.7. 1.2 MSI

The MSI architecture committee believes that architectural development is a cyclic

process. The MSI architecture is currently undergoing its second design, implement and

test cycle.

C.7. 1.3 Comments

RCS and MSI are compatible here.

C.7.2 Mapping Architectural Components onto Hardware

This issue is discussed in Section 4.5.2 on page 20.

C.7.2. 1 RCS

Several RCS papers describe the assignment of control or computation processes to

processors during control system design. [Albus8, section “Software Development

Environment”], [Fiala3, section 3], [Horstl, figures 7, 8 give example maps], [Lumia2,

section 4], [Michaloski2, section 4]. The method for making the assignments is usually

“estimate what will work, implement it, test, and redo until it works”.
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This issue is closely related to the resource allocation issue discussed in Section 5.9.3

and Section C.17.4.

C.7.2.2 MSI

It is up to the implementation to divide the control entity (a controller-scheduler

combination) into one or more processes. If a control entity is implemented as more

than one process (in the computer science sense of the term), the scheduler-controller

interface must be followed. If this is not split, the interface is permitted to not conform

to the specification. Thus, certain choices may restrict an implementor’s options. If the

scheduler and controller are to be implemented as separate processes in a non-

multitasking environment, this requires at least two machines per control entity.

The MSI architecture makes few assumptions about where data is stored. Private data

is permitted and may be local or remote. Shared data is supposed to reside in a logically

global database. However, it is possible for the data to be stored in a “globally

accessible” place which is accessible by only a limited number of architectural units.

C.7.2.3 Comments

RCS and MSI are compatible here. It is worth noting that the assignment of controllers

to hardware in RCS is usually a fixed part of an RCS implementation (it would be

difficult to assure hard real-time performance otherwise), while the assignment of

controllers to hardware in MSI (which is designed for soft real-time operations) is done

in an easily changeable configuration file which is part of the data for an

implementation.

C.7.3 CASE Tools

This issue is discussed in Section 4.5.3 on page 20.

C.7.3. 1 RCS

RCS-Specific CASE Tools

In the RCS papers, Computer-Aided Software Engineering (CASE) tools designed

explicitly for building RCS systems are reported only in [Horstl, section 3.18]. That is

a reference to a CASE tool for designing “Barbera RCS” systems which has been

developed at the Advanced Technology Research company. In addition, one of the

authors has worked on a prototype RCS CASE tool, but this has not been reported.

The use of CASE tools is explicitly suggested in [Albus3, section “ARTICS Vision”],

[Albus9, section 2 and appendix A], and [Szabol].

Development Environment

Some RCS papers, [Lumia2, section 4], for example, mention that it is useful to have a

control system development environment with software tools and hardware systems

which differ from the software and hardware configuration that the completed control

system is to have. In the development environment, the systems are generally set up to

allow systems programmers to monitor what the control system is doing and to help
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with debugging computer code for the system. Often the operational hardware and

software are optimized for hard real-time performance and do not permit monitoring or

debugging.

Simulation and Animation

Several RCS papers cite existing or suggested simulation and animation systems for

simulating the hardware being controlled and/or the environment in which the hardware

operates and for graphically depicting the simulations and the operation of the system

in action ([AlbusS, section 7], [Albus3, section “Simulation and Animation”], [Albus9,

section 3.11], [Feldman 1, sections 5, 7, 8], [Horst 1, sections 2.4, 2.5, 2.6, 4.1.2, 4.1.3],

[Quinterol, issue ME0010], [Quintero3, section 6 - table 1 item 6]). Simulation and

animation are useful both for control system development and for system

demonstrations.

C.7.3.2 MSI

MSI does not address CASE tools.

C.7.3.3 Comments

RCS and MSI are compatible here. There is no requirement for CASE tools, and if they

are used, they do not have to be regarded as part of the architecture.

C.8 Conformance Criteria

This issue is discussed in Section 4.6 on page 21.

C.8.1 RCS

The notion of conformance criteria is discussed in [Albus3, section “Testing and

Validation”], [Albus9, section 5.4], and [Szabol]. No conformance criteria are reported

in the RCS papers as having been defined for RCS. The extent to which the specific

applications described in some papers conform to the more abstract architectural

specifications given in other papers is not clear.

C.8.2 MSI

MSI does not address conformance testing methods, usefulness of conformance testing,

or testing conformance in development. MSI does not have different conformance

classes.

MSI addresses allowing non-conformance in controllers and schedulers. An entity can

be included if it contains the functionality of one or more architectural units in MSI or

can be made to appear as if it contained the functionality of one or more architectural

units. For example, a commercial controller which has the functionality of both an MSI
planner and controller may be packaged to include the interfaces of both a planner and

a controller to the exterior, and the interface between the planner and controller remains

private. Another example is that of the centralized planner. As long as it can be made

to exhibit interfaces to the appropriate controllers, this can be made to fit into the
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architecture. It would not be possible, however, to include a controller which did not

perform all of the expected functions, without writing software to perform the missing

ones. It should be noted that the fullest use of the error-handling facilities of the

architecture occurs when the architecture is followed down to the lowest possible

hierarchical level. The “higher up” the black box extends, the more impaired the error-

handling capabilities.

C.8.3 Comments

Any joint architecture should include conformance criteria that are at least sufficient to

allow one to decide whether a specific control system is an implementation of the

architecture.

C.9 Standards Issues

This issue is discussed in Section 4.7 on page 22.

C.9.1 RCS

The upper tiers of architectural definition of the RCS architecture do not specify that

standards must be used at lower tiers, but most RCS papers that describe hardware and

software used in RCS systems mention the use of one or more standard items (such as

RS232 for communicating or a programming language such as C).

The ARTTCS papers ([Albus3], [Albus9]) suggest that the long-run aim is that ARTICS
should be a set of standards.

C.9.2 MSI

The MSI architecture suggests compliance with standards where appropriate. Presently

available standards which are appropriate include SDAI (STEP Data Access Interface)

[Fowlerl] for remote data access, EXPRESS [Spibyl] for information modeling and

MAP [MAPI] for networking.

The MAP standard enforces a connection-oriented, point to point, guaranteed

messaging paradigm. The MAP standard is only required for command and status

messages. Variations on the MAP stack, including the use of Ethernet instead of a

broadband communications medium is permitted as long as the implementation uses

the MMS protocol. Communications with the database does not have to use MAP.
Internal inter-process communications are unconstrained.

A major aim of the MSI architecture development is to provide input to the appropriate

standards committees.

C.9.3 Comments

RCS and MSI are compatible with regard to standards.

C.10 Domain

This issue is discussed in Section 5.2 on page 25.
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C.10.1

C.10.2

C.10.3

C.11

C.11.1

RCS

Most RCS papers describe the intended application domain in some fashion. Those

which describe applications of RCS generally describe the domain fairly specifically.

The application-independent RCS papers, however, do very little to describe the range

of situations to which RCS is intended to apply. Usually the range is characterized by

a short phrase such as “intelligent real-time control systems”. These papers also do not

describe the secondary characteristics of applications that make them suitable or

unsuitable for RCS [Albus2, beginning and section “Applications”], [Albus3, section

“Introduction”], [Albus6, section “Introduction”], [Albus8, section “NASREM: The

Conceptual Architecture”], [Albus9, section 2], [Lumial, section 1], [Lumia2, sections

2, 3], [Michaloskil, section 1.2], [Quintero3, sections 1,2- introduction].

The one common characteristic of the uses described in the RCS papers is that they are

all hard real-time and have to deal to some degree with an environment that can change

unpredictably, so that sensors and sensory feedback to control are required.

MSI

The intended domain of MSI is discrete parts manufacturing, which is a highly

structured environment. The architecture applies only to situations which do not need

for the response time of the control system to be guaranteed and in which software

response time is not a critical factor. This limits the architecture to upper levels of

control.

The information models are specific to discrete parts manufacturing. The information

architecture is generic. The communications paradigm is generic, but the suggestion

that it be MAP is manufacturing-specific. The scheduling/execution interaction is

manufacturing-specific, but could be generalized.

Comments

MSI is much more narrowly focused than RCS.

If a joint architecture is built, the builders should try to identify the secondary

characteristics of the domain of the architecture to determine whether the architecture

will fit the specific situations.

Architectural Conformance

This issue is discussed in Section 5.3 on page 25.

RCS

Dealing with black box controllers in an RCS system is discussed in [Michaloski2,

section 2.1], [Michaloski3, sections 2,3], and [Quintero3, sections 2.3.3, 6]. In several

RCS implementations, at the lowest level of an RCS controller hierarchy, the “actuator

signals” that are sent are instructions to a non-RCS controller in a non-RCS format used

by the controller.
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Of course, if an architecture places requirements only on the interfaces of controllers,

all controllers in a control system implementing the architecture are black boxes from

the viewpoint of the architecture. Often, however, RCS implementations place

requirements on the internals of controllers as well as on their interfaces - such as by

requiring that every controller be a finite state machine. Implementations may also

place limitations on the nature of a controller (such as: it must be able to run on a

processor that fits into a VME bus) that force architectural conformance.

C.11.2 MSI

The MSI architecture defines atomic units, namely planners and controllers. Among
planners and controllers, only exposed interfaces need to conform to the architecture.

This gives many ways in which to include black box systems. For example, a

centralized scheduler could be included by exhibiting a planning interface for each

controller, while allowing the internals of the planner to remain private. Black box

controllers are permitted, provided they exhibit the required interfaces. The user should

be warned that, wherever black boxes are inserted, the error recovery capability of the

architecture may be diminished.

C.11.3 Comments

Any joint architecture should make clear the requirements for conforming to the

architecture. It should clearly identify the atomic units of the architecture. Whether

atomic units should be black boxes or should have some of the internals specified must

be resolved. Whether to permit the inclusion of software or hardware modules whose

internals are unknown is an additional issue. It should be noted that the ability to permit

black box modules to be included in an architecture is required if an architecture is to

permit the inclusion of commercial systems.

C.12 Human Interactions with the Control System

This issue is discussed in Section 5.4 on page 25.

C.12.1 RCS

This will be covered in Section C.13.9, since interactions with a control system as a

whole are very closely related to interactions with individual controllers.

C.12.2 MSI

MSI expects humans to be involved in the generation of the process and production

plans.

Humans (or other intelligent agents) are expected to interact with the control system in

the event that there are errors which can’t be automatically fixed. The guardian/planner

and guardian/controller specify the corrective actions which a human monitoring agent

may take through the command hierarchy. Of course, human agents may affect the

control system by altering the database or performing mechanical operations, such as
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C.12.3

C.13

C.13.1

C.13. 1.1

C.13. 1.2

C.13. 1.3

C.13.2

C. 13.2.1

C.13.2.2

rebooting machines. A major conclusion of the architecture is that, until process and

production planning can be automated, automatic error-resolution for most non-

scheduling errors can not occur.

Comments

See Section C.13.9.

Controller Issues

Controller Functionality

This issue is discussed in Section 5.5.1 on page 26.

RCS

Most of the RCS papers deal with controller functionality. How RCS deals with

conttoller functionality was described in Section 7.1 of this report

MSI

In the MSI architecture, the item called a controller performs manufacturing tasks. The

controller is also responsible for monitoring the performance of the manufacturing task

and reporting when errors occur. The controller executes either a plan or a work

element. In the case of all controllers except the shop level, it fetches the plan upon

command of its superior and parses the plan using any parameters which the superior

may pass down to it.

Comments

The RCS and MSI views of controller functionality are similar but generally

incompatible in the details. RCS itself has many different variations of controller

functionality.

Reaching agreement on controller functionality will be a challenge in developing a joint

architecture.

Internal Units

This issue is discussed in Section 5.5.2 on page 26.

RCS

This is covered fully in the discussion of granularity in Section C.6.1.

MSI

In the case of MSI, the controller is an internal unit of an architectural construct called

a control entity. A control entity is a unit which contains a controller and its related

planner.
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C.13.2.3

C.13.3

C.13.3.1

C.13.3.
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C. 13.3.3

C.13.4

C. 13.4.1

Comments

See Section C.6.1.

Operational States

This issue is discussed in Section 5.5.3 on page 26.

RCS

None of the RCS papers mention operational states.

MSI

MSI has operational states for planners (available, active) and controllers. These states

determine what can be done with messages when they arrive. The state diagram for

controllers is complex. The action of the controller is not completely determined by the

state however, but includes information in its plan, in the database (e.g. resource

information) and in parameters passed down from the superior. The controller states

are: available, active, pausing, paused, terminating, terminated, e-stopped. If the

command affects an existing task, the disposition of a command is also affected by the

task state of the associated task.

Comments

RCS and MSI are compatible regarding operational states, since RCS says nothing.

Defining operational states seems very desirable in a joint architecture.

Execution Model Issues

This issue is discussed in Section 5.5.4 on page 26.

RCS

An architecture may require certain characteristics of the execution of controllers.

Because RCS systems are hard real-time control systems, some RCS papers suggest

placing requirements on the execution model for controllers. An often-stated set of

requirements is that in the execution of a controller:

(1) non-blocking (rather than blocking) I/O should be used

(2) cyclic processing (rather than interrupts) should be used

(3) it should be possible to put inactive controllers to sleep

Those requirements are not adopted by all RCS implementations. RCS papers

discussing these issues include: [Horst 1, section 3.7], [Leake 1, section 3.1],

[Michaloski2, sections 2, 3], [Michaloski3, section 3], [Quintero 1, issue ME0007],

[Quintero3, section 3.8]

[Fiala2, section 4] and [Wavering2, section 2.3] provide examples of control systems

using sleeping controllers with wake-ups.
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C. 13.4.2

C. 13.4.3

C.13.5

C. 13.5.1

MSI

A control system conforming to the MSI architecture functions in a data-driven

interrupt mode. On the thesis that it would be impossible to examine every piece of data

in one processing cycle, MSI stipulates that a re-examination of pertinent data be done

after any of the following events:

( 1 ) a new order arrives,

(2) a resource availability changes,

(3) an error in execution occurs,

(4) a plan is changed.

Control entities are informed of these events through commands. It is not specified in

the architecture how an event of type (1) is noticed. A type (2) event must be input by

human intervention. A type (3) event can be noticed by either a human or a control

entity. A type (4) event may be initiated by a planner.

Comments

RCS and MSI appear to be incompatible regarding the execution model for the control

system.

A joint architecture might be defined that does not address the execution model at the

top tier of architectural definition. It would seem desirable to allow different execution

models at different hierarchical levels, to take account of the different speeds of

execution and different data requirements.

Operational Modes

This issue is discussed in Section 5.5.5 on page 27.

RCS

Operational Modes are discussed in [Albus3, section “Level of Automation

Flexibility”], [Albus5, section 2.5], [Albus7, section 2.5], [Albus9, section 3.3],

[Fiala4, section 3.2], [Herman2, section 1], [Leakel, section 4.2], [Lumia2, section 3],

and [Szabo3, section “High Level Review of TEAM Design]. In general, the modes
which are discussed are modes of human interaction with the control system. The

modes described in [Albus3], for example, include: teleoperation and remote control,

computer-aided advisory control, traded control, shared control, human override,

human-supervised control, autonomous control, sensory interactive control, and mixed

mode control. Types ofmodes other than human interaction modes are rarely discussed,

but certainly many RCS implementations include at least a “debugging” mode.

Unlike the Domier architecture, the RCS architecture does not suggest having a tier of

architectural definition to deal with the requirements introduced by specifying a mode
of human interaction. Several of the RCS papers imply, to the contrary, that several

alternate modes should be available within an implementation.
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C.13.5.2

C. 13.5.3

C.13.6

C.13.6.1

C. 13.6.2

C.13.6.3

MSI

The architecture does not require that controllers have different modes. However, in the

implementation, the controllers ran as either real or emulated, based on whether the

hierarchy was really controlling equipment. The emulated mode allowed the user to

speed up or slow down time for demonstration and testing purposes.

Comments

RCS and MSI seem compatible regarding operational modes.

It seems desirable to cover operational modes in the joint architecture.

Standard Internal Workings

This issue is discussed in Section 5.5.6 on page 27.

RCS

Many of the RCS papers say that each controller (or each WM, SP, VJ or BG controller

component - or each JA, PL, or EX component of BG) should be a finite state machine

or should be a sandwich consisting of a pre-process, a finite state machine, and a post-

process. RCS papers taking this position include: [Albus5, section 4], [Albus7, section

4], [Horstl, section 3.5], [Leakel, sections 2, 3.1], [Quintero3, section 3.8]

[Wavering2, section n.2.2]. Wavering points out that:
"
Decision processing is usually

composed ofa two-level hierarchy ofstate tables. The top state table is used to call the

appropriate state tablefor the current input command This seems to be the usual way

state tables are used in RCS implementations. Logically, of course, a hierarchy of state

tables of the sort described may be thought of as a single state table.

Requiring that each controller be a finite state machine seems implicit in [Huang 1,

section 3.4] and [Michaloski2, section 1], as well, even though it is not explicitly stated.

It seems likely that several other RCS papers refer to implementations in which the

controllers are finite state machines, but the paper just does not mention it. Some RCS
implementations may not use finite state machines.

The RCS papers do not suggest any other type of standard internal working.

MSI

If the internals of the controller are exposed, they must conform functionally to the

planner/controller division mandated by the architecture and must have the five

interfaces specified.

Comments

RCS and MSI are not compatible in this respect. As discussed previously in the

Conformance section, conformance in MSI is solely a matter of exhibiting the correct

interfaces. All units are black boxes. Some versions of RCS specify the internals of the

atomic units. The two approaches are incompatible. There are several possible

resolutions of this issue. First a choice between the two could be made. Secondly, the
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C.13.7

C.13.7.1

C. 13.7.2

C.13.7.

3

C.13.8

C.13.8.1

architecture could specify when internals were required, and when they were optional.

Third, the joint architecture could avoid requiring standard internal workings at the top

tier of architectural definition but could provide an application-independent tier of

architectural definition in which a requirement of standard internal workings could be

stated.

Command Queues

This issue is discussed in Section 5.5.7 on page 28.

RCS

Having a controller maintain queues of incoming commands is discussed only in

[Lumia3 section 4] and [Wavering 1 section 2] of the RCS papers. [Lumia3] states that

for the primitive hierarchical level of an RCS control system in the particular

application described (robot motion control):
“An input command queue is necessary at

the Prim level so that smooth transitions between consecutive path segments may be

planned” In other words, future commands are needed in order to plan what to do now.

MSI

An MSI controller cannot put commands in queues. The superior will send the

command at the correct time for it to be performed. Messages, however, may be queued

if the rate of transmission of the subordinate overloads the higher level controller’s

ability to process the messages.

Comments

MSI is incompatible with the two versions of RCS that require that incoming

commands be queued, but most RCS papers are silent on such queues. Note that the

goal of queuing commands, that knowledge of future anticipated actions is required, is

achieved in MSI by requiring plans to be generated in advance. For a joint architecture,

there may be a number of different ways of accommodating the need to anticipate

possible future actions.

A joint architecture should address the issue of command queues. Allowing two

varieties of controller (with and without queueing capability) might be a workable

solution.

Multiple Simultaneous Tasks

This issue is discussed in Section 5.5.8 on page 28.

RCS

None of the RCS papers discuss this issue or report controllers that deal with multiple

simultaneous tasks.
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C.13.8.2

C.13.8.3

C.13.9

C.13.9.1

C. 13.9.2

MSI

The MSI architecture permits all controllers except for equipment controllers to have

multiple simultaneous tasks. An equipment controller is constrained to do only one

“MSI” task at a time. If the task is decomposed further, this decomposition remains

private and is not seen by the rest of the MSI architecture.

Comments

RCS and MSI are compatible regarding multiple simultaneous tasks since RCS is silent

on the issue.

A joint architecture should address the issue of multiple simultaneous tasks.

Human Interactions with Controllers

This issue is discussed in Section 5.5.9 on page 28.

RCS

This section covers both human interactions with (individual) controllers and human

interactions with the control system (as a whole). These issues are discussed in [Albus3,

section “Human and Computer Interface Flexibility”], [Albus5, section 2.5], [Albus7,

section 2.5], [Albus8, section “Operator Interface”], [Albus9, section 3.2], [AlbuslO,

section “An IVHS Vehicle Control Architecture”], [Fiala4, section 3.2], [Lumia2,

section 3], [Huangl, section 2.10], [Michaloskil, sections 2.3.11, 3.3.4, 5.4]

[Quintero3, section 3.7], [Szabo4, scattered], [Waveringl, sections 3.2, 8.6, 8.7],

[Wavering2, section IV]. This issue relates closely to “Operational Modes”, discussed

in section C.4.4.5, since most operational modes are modes of human interaction with

the control system as a whole.

The ARTICS papers, [Albus3] and [Albus9], simply argue that there should be a wide

range of human interfaces to controllers and control systems.

The NASREM theory papers, [Albus5] and [Albus7], most extensively, say there

should be both control and monitoring interfaces. Monitoring interfaces are to be

available for every component.

Most other application-independent RCS papers require that a human interface to every

component or controller be included in any application. Application-specific RCS
papers which raise the issue generally report that human interfaces to individual

software components have been built for monitoring and debugging, at least.

MSI

Humans may interact with either the planner or controller function or with both. An
interface may be either passive or active. A passive interface may only view the

information being sent by the control entity and set the parameters of the reports. Active

interfaces (there can only be one of these for each planner or controller) may modify

the administrative aspects of the monitored agent or tasks assigned to it. Interactions are

limited to those specified in the control entity interface. With the controller, the human
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C. 13.9.3

C.14

C.14.1

C.14.1.1

C.14.1.2

may do such things as emergency stop the system, tell the system that a subordinate is

impaired, terminate, abort or defer tasks, or set task reporting and notification

parameters. With the scheduler, the human may do such things as emergency stop, or

tell the control system that a subordinate is impaired and intervene in the contracting

process in limited ways. A process is not required to have a human interface. However,

in order to handle certain conditions, you must have one.

Purely application-specific interfaces are not allowed. However, the user can make

error and status codes and perform other sorts of (specified) modifications to the code.

It is not possible for the user to add another function to the interface.

Comments

RCS and MSI are incompatible with regard to the human interface to controllers. Many
RCS implementations involve having a human in exclusive or shared control of a task

that requires a task-specific human interface, like a joystick or steering wheel. MSI does

not anticipate human control or shared control as part of the normal functioning of the

control system and does not permit task-specific interfaces.

For monitoring and debugging interfaces, RCS and MSI are not fully compatible, but it

would probably be easy to agree on how to handle them in a joint architecture.

Collections of Controllers

Modes of Interaction

This issue is discussed in Section 5.6.1 on page 29.

RCS

RCS requires that control systems be strictly hierarchical. We do not include citations

to all the RCS papers that say that here, since there are so many. Each controller (except

the one at the top of the hierarchy) has exactly one superior and zero to many
subordinates. Dynamic reconfiguration of the hierarchy is intended to be available, as

discussed in Section C.5.1.1.3. No use of negotiation for tasks is reported in the RCS
papers, and the problem of dealing with a material handling system serving several

workstations is not discussed.

Controllers interact via a command-and-status protocol. Citations to the use of a

command-and-status protocol for interactions between controllers are given in Section

C.15.3.2.1.

A little theoretical discussion of non-hierarchical interactions is given in [Horst 1,

section 3.3] and [Quintero3, section 3.2].

MSI

The MSI architecture mandates that controllers be structured in a hierarchy. The
hierarchy must have a single top-level controller called the shop controller. It is

distinguished from other controllers by being driven off of orders being given to the
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C.14.2

C. 14.2.1

C. 14.2.2

C. 14.2.3

C.14.3

C. 14.3.1

shop from external or internal sources. The lowest hierarchical level of controller

specified by the MSI architecture is the equipment controller. This entity may or may
not control actual equipment. It may internally be composed of any number of

cooperating controllers, but this is not visible to the higher levels of the hierarchy. This

means that, below the equipment level, only the types of errors which are recognized

by the MSI architecture can be percolated up, although certainly error codes may be

added which convey additional information. Between the shop and the equipment

controllers, any number of levels of “workcell controllers” coordinate the actions of

other controllers.

The hierarchy is flexible in the sense that a controller (or a part of a controller such as

the MSI planner or the MSI controller) can be replaced by another planner/controller if

it becomes impaired. This is accomplished by specific messages outlined in the control

entity interface. Commands to ignore or accept a new subordinate must be given by the

guardian (intelligent) interface. Other than replacing subordinates, the hierarchy does

not change during control system operation. Complete specification of the hierarchy is

modeled in the information models for the system and is required information for an

implementation.

Comments

RCS and MSI are compatible with regard to how controllers interact.

Control of Devices and Controllers

This issue is discussed in Section 5.6.2 on page 30.

RCS

The RCS papers do not take a position on this issue.

MSI

In the MSI architecture, it is permitted for a controller to supervise both another

controller and a device.

Comments

RCS and MSI are compatible regarding control of devices and controllers.

Synchrony and Speed

This issue is discussed in Section 5.6.3 on page 30.

RCS

RCS is, of course, designed for working in real time, so it is required that all individual

controllers, and the control system as a whole, run fast enough to keep up with events

in the environment in which the system is operating.
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C. 14.3.3

C.15

C.15.1

C.15. 1.1

C.15. 1.2

Some RCS implementations provide that all controllers must keep to a fixed cycle rate.

The RCS handbook [Michaloski2], however, suggests that the lowest levels of a control

hierarchy may need to be synchronous, but the higher levels may be asynchronous.

MSI

MSI does not specify any sort of synchrony for controllers. It considers that this may

be required for hard real-time response, but is not appropriate for the higher levels of

control. MSI includes a system clock, which is for purposes of making up schedules in

which times mean (approximately) the same thing to each control entity. This clock is

explicitly not for functions such as determining message sequencing, or matching times

with a precision of greater than one second.

Controller actions are coordinated according to the required sequences of command

messages, and the timing of this is controlled by the production plan’s schedule.

Comments

MSI is incompatible with regard to synchrony with the branch of RCS that requires

controllers to keep to a fixed cycle rate.

Task Specification, Generation and Execution

Specification of Work Elements

This issue is discussed in Section 5.7.1 on page 31.

RCS

RCS methods for specifying work elements (often called tasks in the RCS papers) are

discussed in [Albus4, section IIIC] and [Miehaloskil, sections 2.3.9, 4.1, 4.2, 4.3.6,

6.4]. In these papers, a work element is defined using a frame representation. Each work

element has zero to many parameters (or attributes) which are assigned values for

specific instances of the work element. One of the parameters identifies the goal of the

task.

Although none of the RCS papers describing implementations use frames to define

work elements, the work elements in implementations are conceptually like frames and

generally do take parameters.

In RCS the semantics of the work element (an understanding of the nature of the task

and how the parameters of the work element relate to the task) is an integral part of the

architecture for the specific application.

MSI

In the MSI architecture, activity is achieved by either issuing a command (for non-shop

controllers) or by receiving an order (shop controller). The plans in MSI contain

complete descriptions of what to do, with branches for various contingencies and types

of concurrency among the branches and may require that the control entity fetch up-to-

149



Feasibility Study: Reference Architecture

date information from the database to make appropriate decisions. The plan may be

updated in real time using feedback from the monitoring of processing. The plan must

exist in advance; it cannot be generated totally reactively. Task execution consists

primarily of parsing and implementing plans.

MSI requires work elements but does not specify a catalog of them. Such a catalog is

regarded as beyond the scope of MSI. Work elements are typically strings with

semantics known only to the controller. For example, a work element string may

specify an NC code program for a controller.

C. 15. 1.3 Comments

RCS and MSI are incompatible with regard to the specification of work elements. Some

versions of RCS require the implementation to understand the semantics of the work

element. In these implementations, the controller must understand what goal the work

element was intending to perform. This knowledge is required if the controller must

construct either its own plan or that of a subordinate. In such versions, the semantics of

the work elements are part of information required for control system execution. In

other versions ofRCS and MSI, the plans are constructed in advance, and the semantics

of the work element need not be known. At present, there are no semantics attached to

work elements in the MSI information models. This incompatibility can be easily

addressed by adding semantic information to the model.

C. 15 .2 Task Decomposition

This issue is discussed in Section 5.7.2 on page 32.

C. 15.2.1 RCS

The RCS architectural specifications and methodology for task decomposition are

described in Section 7.1.3.

RCS papers discussing task decomposition generally include: [Albus6, section 4],

[Albus8, section “Task Decomposition”], [Horstl, sections 2.2, 3.1], [Huangl, sections

2.3, 3.3], [Lumial, sections 3, 4], [Lumia3, sections 3, 4], [Michaloskil, section 4.3],

[Michaloski2, section 1], [Quintero3, sections 2.3.4, 3.1], [Szabo3, section “RCS
Hierarchical Task Decomposition”], [Wavering2, section n.2.1, V, VT|.

RCS papers focusing on temporal and spatial task decomposition include: [Albus2,

section “level definition criteria”], [Albus4, sections HIB, HIE], [Albus5, section 2.1],

[Albus7, section 2.1], [Albus6, section 3], [Albus8, section “Task Decomposition”]

[Lumial, section 2.1], [Michaloskil, sections 2.3.2, 2.3.3], [Quinterol, issues

MM0001, TD0001], [Quintero3, section 2.3.3].

C. 15.2.2 MSI

The results of task decomposition in MSI are represented by a hierarchy of plans. The

decomposition of tasks is constrained to follow the established control hierarchy. The

structure of the control hierarchy is based upon an examination of many, many samples

ofhow task decomposition would be natural for this set of machinery. Typically, a layer
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of control is added when there are two or more other controllers whose activities need

coordinating. For example, in a cell with a robot and a machining station, it makes sense

to have a controller to coordinate the activities, instead of trying to write one controller

with the ability to control both machines. This case is extremely clear because the robot

and the workcell are essentially independent. In cases where there is a considerable

overlap between the controllers being supervised, it is not clear whether having a

superior is advantageous. An example of this would be using separate controllers for

separate joints of a robot finger; it just doesn’t work well [Fiala3]. Of course, there is

always a trade-off between clarity of system design and efficiency. Introducing an extra

controller adds complexity and reduces efficiency. In MSI it is possible to have a

“trivial” plan for any number of hierarchical levels. This gives a mechanism to bypass

intervening levels of control without substantial task decomposition if required.

C. 15.2.3 Comments

RCS and MSI are incompatible in regard to task decomposition.

RCS defines and decomposes work elements in addition to defining a controller

hierarchy for carrying out the tasks specified by the work elements. The work element

decomposition and the controller hierarchy are separate but closely linked.

In MSI, only the controller hierarchy is defined, and this is represented as configuration

data for an implementation. There is no work element decomposition in the MSI
architecture. Task decomposition (in the context of a controller hierarchy

configuration) must be done by the process planner in order to generate process plans,

but generating process plans is outside the scope of the architecture.

It is unclear whether a joint architecture should include methods for task

decomposition.

C. 1 5 .3 Task Execution Model

This issue is discussed in Section 5.7.3 on page 32.

C. 15.3. 1 General Approach to Task Execution

C.15.3.1.1 RCS

In RCS, tasks are executed as the result of commands being carried out. A command
may be created in an RCS controller by instantiating a step from a plan. The step

identifies a work element. In one way or another (usually by putting information in a

database or passing parameters in a command), the information required to define a

command explicitly is put in place. Then the command is issued to the appropriate

subordinate. The command itself may be as simple as GO! (or the logical equivalent),

if the subordinate can do only one thing and does not require any parameters to be

passed to it. Alternatively, the command may be quite long, naming a work element and

giving the values of many parameters.
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None of the RCS papers report making resource allocations during the process of

generating a command from a plan.

Command formats are discussed in [Albus4, section EUC], [Albus5, section 6],

[Albus7, section 6], and [Murphy 1, section IV.2].

C.15.3.1.2 MSI

MSI has a very definite model for developing tasks, consisting of the sequence of

process planning, production planning, scheduling, and execution of production plans.

Process planning is developing a description of the processing of a part. A process plan

references classes of machines and does not specify times. A process plan may have

several alternatives which need to be pruned later in the planning process. In production

planning, lot and batch determination is made and a preliminary selection of which type

of resource will be used. Finally, the plan is scheduled, a time for the execution of each

step is made and an actual resource is scheduled to perform the work. In the MSI

architecture, production plans are computer-interpretable by the control entity (planner/

controller).

The MSI architecture expects each controller to monitor its own progress. If it is going

to be late or if a problem has occurred, the controller is expected to inform its planner

or guardian through a standardized set of messages. If the problem cannot be resolved

at the level at which it is spotted, it will be percolated up the hierarchy to higher levels

which presumably have broader world knowledge. For details see [Wallacel].

C. 15.3. 1.3 Comments

The RCS and MSI approaches to task execution are largely incompatible. In a joint

architecture, it is unclear whether one strategy should be chosen, or whether the two

philosophies can be blended. This will be a major issue.

C. 15.3.2 Command and Status Exchanges

This issue is discussed in Section 5.7.3. 1 on page 32.

C. 15.3.2.1 RCS

As already described, a superior controller tells a subordinate controller what to do by

issuing a command. RCS also requires that each subordinate controller pass status

messages back to its superior informing the superior about the performance of tasks and

the operational condition of the subordinate. This command-status exchange is

described or exemplified in [Albusl, section 4], [Albus3, section “Overview ...”],

[Albus4, page 202], [Albus5, section 1.3], [Albus7, section 1.3], [Fiala4, section 2],

[Feldman 1, section 4], [Horst 1, footnote 12 and scattered], [Huang 1, figure 6],

[Leakel, section 3.1], [Lumial, section 4], [Lumia3, figure 4], [Michaloskil, sections

2.3.10, 5.2], [Michaloski2, section 1], [Michaloski3, figure 1], [Quintero3, figures 9,

12], [Szabo3, page 265], [Szabo4, figure 3] [Waveringl, scattered], [Wavering2,

section 2.1, sections V and VI].
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C.15.3.2.2 MSI

The MSI architecture specifies command and status exchanges between the following

architectural units: controllers and planners, subordinate and superior controllers,

subordinate and superior planners, controller and guardian, planner and guardian. Each

of these interfaces is specified with a fixed set of messages with a fixed set of

parameters. Values of some of the parameters are enumerated sets to which the user can

add (e.g. error-codes). Where the user has an option, this is indicated in the MSI
specification. Although there is a suggested order in which the messages should be sent

to construct a bidding and error recovery, the user is free to use the messages in other

ways, if desired.

C. 15.3.3 Comments

The RCS and MSI approaches to command and status exchanges are compatible,

though MSI has more specific requirements. It is unclear whether MSI’s specific

requirements can be met by RCS controllers. Resolution of this requires further study.

C. 1 5 .3 .4 Coordination of Tasks

This issue is discussed in Section 5.7.3.2 on page 33.

C.15.3.4.1 RCS

In versions of RCS which include the requirement that controllers run synchronously,

much coordination of tasks may be accomplished by building coordination into process

plans. No devices such as semaphores are required in most instances. Some RCS
papers, however, do mention the use of semaphores.

C. 15.3.4.2 MSI

Since the execution of tasks is tied to plans, plans form the basic method for

coordinating tasks. In some cases, semaphores and rendezvous are needed to

synchronize tasks. The information requirements for such system-wide

synchronization is provided by the plan. The semantics of the semaphore are given in

the information models, the form of the semaphore (file, variable, database element) is

left for the implementation to determine.

C. 15.3.4.3 Comments

The RCS and MSI approaches to coordination of tasks are similar but do not seem fully

compatible.

C.16 Data

C. 1 6. 1 Required Data

This issue is discussed in Section 5.8.1 on page 33.
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C. 1 6. 1 . 1 General Approach

C. 16.1.1.1 RCS

Some RCS papers contain informal descriptions of required information. A few of these

describe the general sorts of information required and include specific examples

[Albus2, section “Functionality of RCS levels”], [Albus4 section IV “The World

Model”], [Albus5 section 2.3.1], [Albus6, section 5], [Albus7 section 2.3.1], [Albus8

section “World Modeling”], [AlbuslO, scattered throughout].

Several of the papers cited above propose the extensive use of maps for representing

information about the world, and maps are often mentioned briefly in other RCS papers.

In addition to maps, lists and state variables are often given as types of things found in

the world model.

In no case does any RCS paper mention a formal information model for a world model

or any of the components of a world model in any of the commonly used information

modeling languages (IDEF1, NIAM, EXPRESS). For the servo and primitive

hierarchical levels, data which is required has been described in English [Wavering 1,

throughout], [Fiala4, throughout]. Such a description constitutes a first step toward

formal modelling of the information. To the extent that data structure definitions in a

computer language can be termed formal information models, there are information

models at the lowest tier of architectural definition of RCS implementations. These

computer-language models have not been included in the RCS papers, other than “task

data” in [Wavering2, section VII].

C.16.1.1.2 MSI

MSI focuses on the data which is required in a manufacturing system. The models

include both persistent and non-persistent data. It is not explicit in the architecture

which data must be persistent and which need not be; this is left to the discretion of the

implementors. Obviously, to provide a standard which would make manufacturing

systems interchangeable, this would have to be specified.

Information models also do not have temporal constraint information - for example,

that certain fields must be populated at certain times, but are optional at others. This

information was discussed for the data in the MSI information models, but not written

down as part of the models.

The MSI architecture defines a unified production management model, which shows

the relationship of resources, tooling, product description, orders, maintenance,

scheduling, material handling (containers, logical and physical constructs) and process

plans. The MSI architecture defines detailed models for resources, tooling, and process

plans, and defines types of logical and physical unit used in part production and

assembly. The MSI architecture also defines a configuration model which describes the

MSI architectural entities, their interfaces and states, MSI servers (clock, database

server, common memory server), the computer hosts, and the OSI network entities. The
model shows the relationships among the planned configuration(s) and actual (running)
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configurations. It is anticipated that there be only one running configuration at a time,

but that there may be many planned configurations. More detailed information may be

found in [Rayl], [Barkmeyer2],

C. 16. 1.1.3 Comments

Information integration is critical in certain applications, such as manufacturing, where

many systems other than control systems must work together. A joint architecture for

manufacturing must include some provisions for information integration. Other

domains must include information about the environment in which the control system

operates. It is unclear whether formal information models are required in this case, but

they may be desirable, in order to make explicit the assumptions being made about the

environment.

Architectures assume certain functional, dynamic and information characteristics of the

control system. These should be explicitly modeled in any joint architecture to prevent

confusion and express unambiguously what is required and what is left for the

implementation to decide.

C.16.1.2 Plans

This issue is discussed in Section 5.8. LI on page 34.

C.16.1.2.1 RCS

The format of process plans is discussed in [AlbusS, section 6], [Albus7, section 6],

[Hermanl, section 7.1], [Herman3, section 7], [Horst 1, appendix C], [Huangl, section

3.4], [Leakel, section 3.1, figures 12-5, 12-7], [Quinterol, issue ME0011], [Quintero3,

section 4.2].

RCS does not recognize different types of plans (such as distinguishing between

process plans and production plans).

For writing plans and other purposes, one branch of RCS (including what is usually

called “Barbera” RCS, after Tony Barbera, one of the developers of RCS) requires that

a controller be viewed as a finite state machine. In this branch, a plan is necessarily a

state table or a control law algorithm. State tables are described in the RCS papers in at

least three formats:

(1) an actual table with rows and columns,

(2) a state transition diagram,

(3) a “case” statement written in a computer language, such as C or Forth.

C. 16. 1.2.2 MSI

In MSI, every controller operates off of plans. Plans are generated in advance, but may
have parameters which are passed to it in real time and require information which is up-

to-date. For example, information about the status of resources may be required. The
shop controller operates off of plans, but it is order rather than command driven. When
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an order arrives, appropriate process plan(s) are retrieved and scheduled. It is not

specified by the architecture whether this functionality is within the shop controller

itself or whether it resides in a separate process. The specific plan format which MSI
mandates is ALPS (A Language for Process Specification) [Catron 1].

MSI uses hierarchies of plans. This implies that for plans which are not at the shop

level, all related plans have a common parent. ALPS uses this fact to ensure proper

transmission of synchronization and parameter information.

ALPS has many features of a programming language: constants, variables, variable

binding, interprocess synchronization, concurrency specification, nodes for fetching

information, specifying (sets of) resources (both permanent and consumable) and error

exit from plan. ALPS supports sequential, parallel, and concurrent plan segments. It

supports synchronization between different branches in the same plan and in different

plans in the same plan tree. The types of synchronization are: lock/unlock, signal/await,

delay, rendezvous. Resource allocation can be either exclusive or non-exclusive.

Enhancements are needed to ALPS in the following areas:

(1) A general purpose symbol manipulation language is needed for expressions

involving variables.

(2) Time representation should be enhanced to better represent minimum/
maximum elapsed intervals, overlapping interval times, etc.

(3) Resource allocation expression needs to be broadened to permit more
sophisticated forms of resource sharing.

C. 16. 1.2.3 Comments

RCS and MSI are inconsistent with regard to the representation of plans as well as the

general approach to using plans.

Any joint architecture should provide for the types and format of plans. Once again we
find that the type of plan which is appropriate depends on the area of application of the

architecture and (possibly) the internals of the controller.

C. 1 6. 1 .3 Resource Definition

This issue is discussed in Section 5.8. 1.2 on page 34.

C.16.1.3.1 RCS

None of the RCS papers do any formal resource modeling. [Michaloskil, section 3.1]

presents a “RCS Resource Taxonomy” which includes objects, agents (actor or sensor),

and tools (physical or computational).

C.16.1.3.2 MSI

Resources are defined in the MSI resource model in broad categories. It was decided

that developing a detailed taxonomy of resources was not fruitful; there are several

classifications about.
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A brief overview of the structure of resource model is as follows. Resources can be

physical or logical. Logical units are such things as kits and lots. Physical resources are

further broken down into permanent and moveable resources. Permanent resources are

such items as machine tools, automatic guided vehicles, humans, etc. Moveable

resources are such items as tools, workpieces, kits. Consumable resources include such

items as machine fluid, solder, etc. In the system each permanent resource has a unique

universal resource code, a status (enumeration of unknown, down, impaired, unstaffed,

reserved, needsjhelp, ready and busy), a schedule, and a capabilities list. For the

process planner, the capabilities of the resource are the key item in selecting a class of

resource for a task. For the production planner and scheduler, resource status and

schedule are key in determining resource availability.

C. 16. 1.3.3 Comments

RCS and MSI are compatible regarding resource definition since RCS is silent on the

issue.

C. 1 6.2 Data Handling Architecture

This issue is discussed in Section 5.8.2 on page 35.

C. 16.2.1 RCS

Many RCS papers refer to a “global database” very briefly, without providing details

of what is expected. Those papers that do provide details usually specify that there

should be a distributed global database, meaning that data may reside in many different

computers, but all the non-private data in those computers should be accessible by any

part of the control system [Albusl, section 2.3], [AlbusS, section 2.3], [Albus?, section

2.3], [Quintero 1, issue WMQ001], [Quintero3, sections 2.3.6, 3.8.5]. An apparently

non-distributed global database is described in [Leake 1, sections 3.3, 10.2].

There is not complete agreement on the use of a global database. [Fiala2, section 3]

discusses the issue.

Implementations of RCS often put several processors on a bus along with a shared

memory board on which is stored various kinds of information required by more than

one processor, and each processor that needs the information knows the address on the

memory board where to find it ([Albusl, figure 8], [Fiala3, figure3], [Michaloski2,

figure 10], for example). Implementations also use NIST’s Common Memory which

hides communications details from the user and provides a place where various

processes can read or write into a mailbox.

RCS implementations generally seek to ensure that all the processes that need a specific

kind of data can get it and can get it fast enough. None of the papers about recent

(NASREM and after) implementations ofRCS describe any implementation of a global

database of the sort envisioned in the theoretical papers. There are no reports of the use

of commercial database systems in the papers that describe RCS implementations.
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C. 16.2.2

C. 16.2.3

C.17

C.17.1

C.17. 1.1

MSI

The MSI architecture provides a scope for some items in the information models. The

assumption of the architecture is that there is information which must be globally

available (to every control entity in the system), and information which may need to be

accessed by a group of control entities, and information which is truly private. The CEI

specification assumes certain scoping decisions. For example, for plans the assumption

is that a controller-planner pair can access the appropriate plans, but the plan can be in

an entirely private place. Information which needs to be passed to superiors and

subordinates is exchanged through message parameters. In contrast, to implement the

synchronization constructs required by the ALPS model, the data specified for that type

of synchronization must be available to all the parties which need it. Note: the parties

involved in a synchronization scheme cannot be determined in advance, when the

configuration is set up. They are determined dynamically according to the plans being

executed. The author’s view is that every item in the information model should have a

scope, or a notation that the scope of the item is left for the implementation to

determine.

As discussed above, there are various sorts of permissions for data access. There are

also various degrees of transparency for data access. For example, it may be physically

transparent where the data resides, but conceptually, you may need to know what model
the information is in. A higher level of transparency is not to need to know where the

data is, either conceptually or physically. The MSI perspective is that the optimum is

for implementations to be able to access information through the conceptual schema.

This is typically not achievable with the technology available today because for each

additional degree of transparency, there is usually a performance penalty.

Comments

RCS and MSI are incompatible with regard to data handling.

A joint architecture should provide for data handling. It is unlikely that a single model
of data access permissions will be adequate. Multiple data access mechanisms are also

required.

Planning, Scheduling, and Resource Allocation

This issue is discussed in Section 5.9 on page 36.

General Approach

RCS

RCS does not provide for the explicit separation of process planning, scheduling, and
resource allocation.
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C.17.1.2

C.17.1.3

C.17.2

C. 17.2.1

C. 17.2.2

MSI

As previously discussed in Section C.16.1, the MSI architecture has a specific model

for the transformation of process plans to executable production plans. Process

planning, scheduling, and resource allocation are separate processes which are carried

out in advance of execution, although the scheduling and resource allocation can be

dynamically altered during execution.

Comments

The RCS and MSI approaches are incompatible. In formulating joint architecture(s) the

production process (which includes planning, scheduling, execution processes) should

be made explicit, so that the assumptions hidden in the two different approaches can be

identified.

Process Planning

This issue is discussed in Section 5.9. 1 on page 36.

RCS

The format of RCS process plans was discussed in Section C.16.1.2.

Discussions of the activity of process planning in RCS systems are given in [Albus4,

page 213], [Fialal, section 4], [Fiala4, section 6], [Herman 1, section 7], [Herman3,

section 6], [Lumia3, sections 3, 4], [Quintero3, section 5.3.2. 1], [Wavering 1, section 6].

RCS allows that plans may be either devised ahead of time and called up as needed (off-

line planning) or devised as needed (on-line planning). Most implementations reported

in the RCS papers do off-line planning, but on-line planners are also used, particularly

for systems in uncontrolled environments and for robot paths. Statements about off-line

vs. on-line may be found in [Albus5, section 6], [Albus7, section 6], [Fialal, section 4],

[Hermanl, section 7], [Herman3, section 6], [Horstl, section 3.7], [Huang 1, section

3.3.2]. Examples of on-line planning are given in [Albusl, section 5], [Hermanl,

section 7], [Herman3, section 6], [Wavering 1, section 6].

MSI

MSI views process planning as usually an “off-line” activity. Typically the process

plans are generated using classes of machines and are made for lot sizes of one. Process

planning is usually manual at present, but it is anticipated that in the future this activity

will be automated. An envisioned extension of MSI is the extension of error recovery

to include dynamic modifications to process plans. This is typically necessary when a

part has been partially processed and the processing must be modified to permit

completion of the part, or when resources which were originally going to be used are

not available.
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C. 17.2.3

C.17.3

C.17.3.1

C. 17.3.2

C.17.3.

3

C.17.4

C. 17.4.1

Comments

RCS and MSI are somewhat incompatible regarding how process planning is done,

since MSI views it as off-line, whereas several RCS implementations do it on-line.

It is desirable that a joint architecture permit both off-line and on-line process planning.

Scheduling

This issue is discussed in Section 5.9.2 on page 36.

RCS

Some of the ideas of scheduling as presented in Section 5.9.2 of this report are

discussed briefly in [Albus6 sections 2, 4], [Albus8, section “Timing”], [Michaloski2,

section 1], and [Quintero3, section 4], but of those, only [Albus6] even uses the word

“scheduling”. There is no section of any RCS paper focused on the idea of scheduling.

The concept of scheduling used in MSI is not addressed anywhere in the RCS papers.

MSI

Scheduling is viewed as the last step performed before execution. The most current

resource availability is used in generating the schedule. However, there is an intimate

tie to the allocation of resources for the task and therefore scheduling and planning are

often regarded as a unit.

When the superior planner/subordinate planner interfaces or the planner/controller

interfaces are exposed, the MSI architecture requires a bidding mechanism to be

supported for scheduling tasks.

Comments

RCS and MSI are incompatible regarding scheduling. Even though RCS is silent on

scheduling per se, RCS systems do decide when each controller does what.

This will be a difficult area for the builders of a joint architecture.

Resource Allocation

This issue is discussed in Section 5.9.3 on page 37.

RCS

The RCS papers mention the allocation of resources other than processing resources

(see section 5.9.3 of this report) briefly or not at all. Those that do include [Albus4,

section “Hierarchical vs. Horizontal”], [Michaloskil, section 3.3.9], [Quinterol, issue

TD0002], and [Quintero3 sections 3.2, 3.3]. In most RCS implementations reported in

the RCS papers, resources are shared not at all, or only a very few resources must be

shared, and the treatment of sharing these resources is handled on a case-by-case basis.

Some RCS papers use the term “resource allocation” to refer to allocating processes to

computer hardware during system design. That issue is discussed in Section C.7.2.
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C. 17.4.2 MSI

MSI allows several types of resource allocation. Resources may be exclusively

allocated, or they may be shared. An example of an exclusive use of a resource would

be the use of a robot gripper to carry a part; the gripper is unavailable for any other task

as long as the grippers are filled. An example of shared use is the use of a tray. More

than one part may fit on it. The balance of the tray is an available resource even though

part of it is allocated. Resources may also need to be allocated over periods of time,

even though they may be idle. An example of this occurs when a part may need to be

processed quickly, and a resource must be prohibited from accepting new tasks until the

critical one is complete. In MSI, this type of allocation of equipment is said to be a non-

preemptible resource allocation.

C. 17.4.3 Comments

RCS and MSI are compatible regarding resource allocation since RCS has little to say

about it.

In defining a joint architecture, it may be desirable to have an application independent

tier of architectural definition below the top tier where an architecture for applications

requiring resource sharing and allocation may be differentiated from an architecture for

applications that do not.

C.18 Communications

This issue is discussed in Section 5.10 on page 38.

C.18.1 RCS

The RCS theory papers do not require any particular type of communications, but often

([Albus5, section 4], [Albus7, section 4] for example) state that communications must

be fast enough to get messages from the output of one controller to the input of another

within one clock cycle of the receiving controller. The communications model for RCS
systems often includes the use of buffers which have one writer and many readers.

A model of communications is discussed in [Michaloskil, section 5.3]. A detailed

report of an implementation of communications is given in [Michaloskil, section 6.3].

Parts of a communications model are scattered in [Quintero3, section 3.8]. Discussion

of other detailed communications issues is given in [Michaloski2, most] and

[Michaloski3, section 3]. Several of the papers just cited state that communications

must be non-blocking in order to ensure that hard real-time performance can be

achieved.

Communications hardware is discussed in Section C.6.3.1 of this report.

Other references to communications are made in [Fiala2, sections 3,4], [Leake 1,

sections 3.1, 3.3, 4.2, 8], [Michaloskil, sections 2.2.7, 2.3.10], [Murphy 1, section VII],

[Szabo3, section “Communications System Characteristics”], [Szabo4, section

“Communication Design Details”], [Wavering2, sections n.2.4, IX].
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C.18.2 MSI

The MSI architecture mandates that the command and status links among controllers be

via a point to point, guaranteed message delivery paradigm and conform to the MSI

control entity interface specification.

The MSI architecture assumes there is a mechanism for exchanging data among any

two control entities. In present implementations of MSI, this has been accomplished

using either NIST’s Common Memory or files (using NFS).

Additionally, the MSI architecture assumes that there is an (unspecified)

communications mechanism to support the client/server interfaces to the database and

clock.

C.18.3 Comments

RCS and MSI do not seem to be compatible regarding communications. This issue will

require a lot of attention by the builders of a joint architecture.

C.19 Checks and Safeguards

This issue is discussed in Section 5.1 1 on page 39.

C.19.1 RCS

Brief discussions of checks and safeguards may be found in [Albus6, section 3],

[Fialal, section “Specification”], [Huangl, section 3.3.3], [Szabo2, section “Current

System Description”], and [Szabo4, section “Remote Control”].

Explanations of error conditions are given in [Leake 1, section 10, appendix A] and

[Murphy 1, appendix B.5].

A brief discussion of a safety system is given in [Albus5, section 2.6] and [Albus7,

section 2.6], which are NASREM papers, but the safety system described there is not

included in any of the system diagrams in the same papers, and none of the NASREM
implementations describes implementing it as described.

[Huangl, section 5.3.2] discusses “vehicle guidance error control”. This discussion

deals with “normal” error (excessive yaw in the heading of a mining machine, for

example).

C.19.2 MSI

To provide for safety of operation, the MSI architecture provides the guardian interface

for human/intelligent access to the control entity. This interface provides for immediate

aborting of all tasks, and controller shutdown. It provides for stopping tasks which are

in progress in a variety of ways: aborting, temporarily halting, calling a task completed.

Each plan node is tagged with a “checkpoint” attribute which indicates when the task

can be interrupted and at which points the resource being used can be preempted. This

aids the user in assessing the results of prematurely ending a task.
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C.19.3 Comments

A joint architecture should provide explicitly for checks and safeguards.

C.20 Error Recovery

This issue is discussed in Section 5.12 on page 39.

C.20.1 RCS

Automatic error recovery for handling “abnormal” error conditions is discussed in

[Albus4, section IKB] and [Herman3, section 6]. In [Albus4] it is anticipated that if

there is a subtask failure, the executor should branch immediately to a preplanned

emergency subtask while the planner selects or generates an error recovery sequence.

[Herman3] reports an implementation of a subtask failure re-planning software module.

C.20.2 MSI

MSI provides for recovery from scheduling perturbations, task interruptions, and

equipment failure. In general, scheduling failure can be fully fixed, while equipment or

task failure may require human intervention and/or redoing the process plan.

Through the CEI, tasks can be aborted, terminated (stopped and deleted), deferred

(stopped with provisions for later resuming), the plan can be checked for modifications,

and the task can be continued from a previous halt. In addition to commands for

individual tasks, commands are provided to pause, terminate, or continue all of a

controller’s current tasks.

The CEI provides for dynamic hierarchy reconfiguration by allowing the operator to

drop or add a subordinate from the configuration.

C.20.3 Comments

RCS and MSI are compatible regarding error recovery. Major features of MSI were

created expressly to provide for error recovery. RCS says little about error recovery, but

what there is seems compatible with MSI.

The builders of a joint architecture should consider error recovery explicitly.

C.21 Desirable Characteristics of a Control Architecture

This issue is discussed in Section 5.13 on page 39.

C.21.1 RCS

The desirable characteristics of a control architecture identified in earlier sections of

this report are the same as those identified in the RCS papers. Extensive discussions of

these are given in [Albus3, section “Requirements”] and [Albus9, section 3]. Other

discussions may be found in [Leake 1, section 2.2], [Michaloskil, sections 2 -

introduction, 6 - introduction], and [Quintero3, section 2.1].
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C.21.2 MSI

MSI directly supports the following desirable characteristics:

(1) modularity

(2) manageable complexity

(3) fault tolerance

(4) error detection and recovery

(5) extensibility

(6) modifiability

(7) portability

(8) reconfigurability

(9) reliability

(10) reusability of software (generic controller, scheduler)

(11) understandability

(12) compatibility with existing and emerging standards.

C.21.3 Comments

RCS and MSI agree regarding the desirable characteristics of an architecture.

The builders of a joint architecture should keep these characteristics in mind.
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Appendix D - Annotated Bibliography

This appendix gives a brief synopsis of a number of papers reviewed for this report.

Complete citations to most of these papers are given in the list of references following

the main text of this report. Only those papers which are not listed in the references have

complete citations here. Text set in italics is a quote from the paper. Some parts of the

synopses are in outline form.

Five classes of related papers are identified immediately after the author identifier:

AMRF . CIM-OSA . MSI, and.R££. Not all papers fall in one of these classes.

[Albusl] RCS A Control System Architecturefor Multiple Autonomous Vehicles

This paper describes the application of RCS to a pair of independently controlled

underwater vehicles. The paper describes what it was intended to do, not a completed

project. It was planned to use RCS for high-level control of two EAVE vehicles "to

control the overall vehicle systems to perform a set ofdemonstration mission scenarios

which require the two vehicles to cooperate in accomplishing a task” . The two

scenarios are (i) cooperative search and approach and (ii) cooperative search and map.

A non-RCS architecture was also to be implemented so a comparison could be made.

The University of New Hampshire provided the autonomous undersea vehicles,

equipped with knowledge based systems for control.

Section 3 of the paper (subsections 2.1 - 2.4) describes "the MAUV system

architecture” , which is largely RCS, including task decomposition, planners, executor,

world modeling, sensory processing, global memory. This paper differs from some
other RCS papers in including a planner manager. Also, emphasis is placed on the

evaluation function of the world modeler, which is to provide value driven decision

logic.

Section 4 describes the levels of the control hierarchy. In this RCS hierarchy, level 4

processes single vehicle tasks, and level 5 processes tasks involving more than one

vehicle. Level 6 was used to decompose a mission into a set of tasks for multiple

vehicles.

Section 5 describes "Real Time Planning in the MAUV Hierarchy” , but it is not

described how independent real-time planners can implement coordinated action or

what the communications requirements for the implementation are. The two vehicles

do not appear in the figures to have any method of communicating in any way while

underwater. The two submarines may have to rendezvous to communicate world model

updates.

[Albus2] RCS RCS: A Reference Model Architecturefor Intelligent Control

This paper describes RCS apart from any specific application, although a list of

applications is given on the last page.

RCS is described as (p. 59) "a canonicalform, not a design specification”.

The paper describes four versions of RCS:
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(1) RCS1 - state-table-based,

(2) RCS2 - state-table-based with image processing added,

(3) RCS3 - task decomposition (TD) is decomposed to JA-PL-EX.

NASREM is an RCS3.

(4) RCS4 - adds value judgment and “sophisticated multilevel tracking

filter interaction between sensory processing and world modeling” (p. 57).

Figure 1 shows RCS3 as applied to a machining workstation. This includes the bottom

five of a proposed 7-level hierarchy: shop, cell, workstation, equipment, e-move,

primitive, servo. All seven levels are described briefly (p. 58), including what the world

model might contain at each level.

Brief mention is made of temporal and spatial decomposition.

Communications (p. 57) “are typically implemented through common memory or

message-passing” at low levels, through a backplane bus at middle levels, and via bus

gateways and LAN’s at high levels.

[Albus3] RCS A Reference Model ArchitectureforARTICS

“This article advocates the development ofa reference model open-system Architecture

for Real-Time Intelligent Control Systems (ARTICS) as a means to accelerate the pace

oftechnological development in automation and robotics''' (page 182).

As described in the second section “ARTICS Vision”, ARTICS is identical to RCS,

which is described in the third section. However, the paper is an invitation to other

parties than RSD to participate in defining ARTICS. “RCS is suggested here as a

starting pointfor discussion ofARTICS concepts". The target architecture should be

developed by cooperative efforts of industry, academia, and government.

As envisioned, the reference model would include hardware components, software

components, communications protocols, and application development tools. It is

envisioned to be an evolving specification.

The paper says the ARTICS architecture should:

(1) provide extensibility in functionality,

(2) provide extensibility in temporal range,

(3) provide flexibility in human and computer interfaces,

(4) support varying levels of complexity and combinations of autonomy and

human control,

(5) provide for real-time control system hardware and software,

(6) support distributed control systems,

(7) be fault-tolerant,

(8) provide application-independence,

(9) provide software portability and interoperability,
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(10) include CASE tools and a selection of simulation and animation tools.

Figure 4 in this paper shows a classification of “automation flexibility” using three

dimensions:

(1) autonomy,

(2) processing and communications power,

(3) sensory interaction.

ARTICS is intended to handle any level of automation. Nine varieties are listed:

( 1 ) teleoperation and remote control,

(2) computer-aided advisory control,

(3) traded control,

(4) shared (simultaneous) control,

(5) human override,

(6) human-supervised control,

(7) autonomous control,

(8) sensory interactive control,

(9) mixed mode control.

The paper calls for additional research on real-time reasoning (fast enough to keep up)

and temporal reasoning (reasoning about time).

The paper calls for coordinating existing research and lists 23 relevant research areas.

[Albus4] RCS A Theory ofIntelligent Systems

This paper presents a theory of intelligent systems “largely based on the Real-time

Control System (RCS) that has been implemented [at NIST]”. The paper uses examples

from machining and autonomous navigation paradigms.

Section II gives “the elements of intelligence" :

(1) actuators,

(2) sensors,

(3) sensory processing,

(4) world model,

(5) values,

(6) task decomposition.

Section HI gives “the system architecture of intelligence" . In this, commands and

status are strictly hierarchical, but sensory processing is a layered graph, and data

sharing may be horizontal. A seven-layer hierarchy with temporal and spatial

decomposition is given in Figure 4. Task frames, command frames, and task

decomposition are discussed.
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Section IV discusses “the world model”

.

At every node at every level of the control

hierarchy there is a world model and a knowledge database. “WM modules provide

memory, communication, and switching services thatmake the world model behave like

a knowledge database in response to queries and updatesfrom the BG, WM, SP, and

VJ modules Together the WM andKD [knowledge database] modules make up the

world model.'’’’ The world model makes heavy use of maps and map overlays as well as

entities. Entities are objects which the intelligent system knows about. In this

document, they are technically defined as an element from an infinite enumerated set.

The information for an entity can be expressed in a frame representation, giving the

"important” properties. The entity database is hierarchical. Each entity has both a

parent and children. An intelligent system also must have a representation for events.

Events may also be represented as frames with such attributes as: kind, type, modality,

time, interval, position etc.

A second Section IV (this section number is used twice) deals with sensory processing.

Sensory processing consists of gathering sensory input and integrating it into more
abstract information units. Subsections are:

A . Measurement ofSurfaces,

B. Recognition and Detection,

C. The Context ofPerception,

D. Sensory Processing SP Modules,

E. World Model Update,

F. The Mechanisms ofAttention,

G. The Sensory Processing Hierarchy,

H. Gestalt Effects,

/. Flywheeling, Hysteresis and Illusion.

The paper assumes the perceptual hierarchy corresponds to the control hierarchy.

Section V discusses value judgments.

Error recovery is built into the planning at each hierarchical level. If an error is

encountered which cannot be handled at that level, the error is propagated up to the next

level. Errors are recognized by comparing the expected value of the world model to the

actual one recognized by sensors (at that level).

[Albus5] RCS NASA/NBS Standard Reference Model for Telerobot Control System
Architecture (NASREM)

This is the fullest description of the NASREM architecture. The document “is to be
used as a reference documentfor the functional specification, and a guidelinefor the

development ofthe control system architecture, of the IOC Flight Telerobot Servicer”.

(a component of a NASA space station). The document does not state that the

architecture is intended for any other application, although other documents about
NASREM do, e.g. [Lumial, page 303].
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“The NASREM control system architecture is a three legged hierarchy of computing

modules, serviced by a communications system and a global memory, and interfaced to

operator andprogrammer workstations” (p. 5). The three legs are task decomposition

(H modules), sensory processing (G modules), and world modeling (M modules); these

are described as having the usual RCS functions.

It is stated that the architecture is composed of a set of standard modules and interfaces.

However, the document also discusses communications paradigms and data access

paradigms.

The overall architecture is described in section 2. Except for section 2.5, which covers

the operator interface and makes occasional reference to space station things, the

section is application independent. Section 2.1 covers task decomposition briefly.

World modeling is covered in section 2.2, global memory in 2.3, sensory processing in

2.4, and safety system in 2.6.

The safety system has access to all information in the world model of the control system

and also maintains its own world model, which is updated redundantly. The safety

system is required to prevent the machine system from entering forbidden volumes in

physical space and state space.

Section 3, “Levels in the Control Hierarchy”, is very application-specific. The

description of the levels given in section 1 (pp. 1 - 2), however, is general:

“The [NASREM] architecture is hierarchically structured into multiple layers, as

shown in Figure la, such that a differentfundamental mathematical transformation is

performed at each layer. At layer one, coordinates are transformed and outputs are

servoed. At layer two, mechanical dynamics are computed. At level three obstacles are

observed and avoided. At levelfour, tasks on objects are transformed into movements

ofend effectors. At levelfive tasks on groups of objects are sequenced and scheduled.

At level six objects are batched into groups, resources are assigned to worksites and

parts and tools are routed and scheduled between worksites."

Section 4 describes communications. For communications, “it is conceptually useful to

think ofpassing variables through a global memory”. “One possible implementation"

would use a state clock which sets a time interval for the system during which variables

are locked from update. Each variable consists of an input and an output box. The

output box has a compute flag on it which signals whether data may be moved into the

output variable. When this flag is not set, the communications system moves this data.

At the beginning of section 4 the intended level of granularity is given (p. 4): “The H,

M, and B modules at all levels of the NASREM architecture can be viewed as state

machines which periodically read input variables, compute somefunction oftheir input

and state, write output variables, and go to a new state.”

Section 5 describes the “Detailed Structure oftheH Modules”

.

This includes the usual

RCS decomposition in JA, PL, and EX. There is only one JA per H module. IA is

responsible for parsing a task command into spatially or logically distinct jobs to be

performed by physically distinct planner/executor functions. PL decomposes job
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commands into “a temporal sequence ofplanned subtasks.
"
Planners construct plans

over the permitted time horizon, and perform cost-benefit analysis of the plan. EX is

responsible for carrying out the plan generated by the planner. Queues of subtasks are

permitted. Executors can request world model information and report status to higher

levels (which component of the upper level task decomposition module is not

discussed).

Section 6 describes “Tasks and Plans” . “A task is an activity which begins with a start-

event and is directed toward a goal. A goal is an activity which terminates a task.”

Several different descriptions of what a plan might be are given. It is provided that “A

plan can be represented in a number of different notations
.”

Gannt Notation is

described in section 6.1, State-Graph Notation in section 6.2 Plans may also be

represented as Petri nets or finite-state-automata grammars. Plans may involve

scheduling of parallel subtasks on different machines, “conditional branching, and

probabilistic decision rules. Plans may also include provisions for error correction

activities and lack ofprogress toward a goal.” Planning may be done off-line or in real

time.

Section 7 describes the possible computer hardware and timing of “An Example

Implementation"

.

Sections 4 - 7 are application-independent. Section 8, “A Functional Description of

Control Levels" describes how NASREM might be applied in specific instances of

space robotics.

Information flow is described as follows:

(1) Command and status are hierarchical.

(2) Other data flows horizontally between modules in the same level of the

hierarchy.

(3) Information flow other than command and status between levels is not

prohibited. The requirement is that all information reside in global memory
variables.

It is specified that an operator interface be provided at each level of the hierarchy.

Through the operator interface, it is possible to:

( 1 ) monitor a process,

(2) insert information,

(3) take control of the task,

(4) make judgments about sensory processing and world modeling.

The operator interface is constrained by synchronization and data integrity constraints.

Specific operator operations are defined for each control interface level.
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[Albus6] RCS RCS: A Reference Model Architecturefor Intelligent Machine Systems

Section 1 describes the evolution of RCS.

“In RCS-1 the emphasis was on combining commands with sensoryfeedback so as to

compute the proper response to every combination of goals and states. . RCS-1 was

implemented as a set ofstate-machines arranged in a hierarchy ofcontrol levels.”

“The new feature ofRCS-2 was the inclusion of ... a number of sensory processing

algorithms . .

.”

“Theprinciple newfeatures introduced in RCS-3 are the World Model and the operator

interface.”

“The principle new feature in RCS-4 is the explicit representation of the Value

Judgment (VJ) system.”

Section 2 gives “A Machining Workstation Example" of RCS-3 for a workstation

containing a machine tool, part buffer, and robot with vision system. A seven-level

control hierarchy is described. The characteristic time, the nature of commands, and the

world model contents are described at each level.

Section 3 describes the “organization and timing in the RCS hierarchy.”

“Levels in the RCS command hierarchy are defined by temporal and spatial

decomposition of goals and tasks into levels of resolution, as well as by spatial and

temporal integration ofsensory data.”

Section 4 describes task decomposition, including task frames and planning.

Section 5 covers world modeling. “The world model is an intelligent system’s internal

representation ofthe external world . . . The world model also includes knowledge about

the intelligent system itself
”

In the knowledge database of the world model, “Knowledge about space is represented

in maps. Knowledge about entities, events, and states is represented in lists andframes.
... Information in the world model knowledge database may be organized as state

variables, system parameters, maps and entity frames.” Examples of these four types

of data at five hierarchical levels are given.

Section 6 covers sensory processing. “Thefunction ofsensory processing is to extract

information about entities, events, states, and relationships in the external world, so as

[to] keep the world model accurate and up to date.” The sensory processing system

does map updates, recognition, and detection. “Each SP module at each level consists

offive types ofoperations:

(1) Coordinate transformation,

(2) Comparison,

(3) Temporal Integration,

(4) Spatial Integration, and

(5) Recognition! Detection.”
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Section 7 covers value judgments.
"
Value judgments evaluate the cost, risks, and

benefits ofplans and actions, and the desirability, attractiveness, and uncertainty of

objects and events

Concluding remarks include: “RCS is not a system design, nor is it a specification of

how to implement specific systems. ...A reference model architecture is a canonical

form, not a system design specification

[Albus7] RCS Mining Automation Real-Time Control System Architecture Standard Reference

Model (MASREM)

This paper describes an adaptation of NASREM to coal mining. Much of the material

is identical to that found in [Albus5], which is the primary description of NASREM.
The sections which are mostly the same are 2, 4, 5, and 6.

The differences between this paper and [Albus5] are in the application-specific

sections. Sections 1 and 3 of this paper describe a 7-level control hierarchy for coal

mining. The hierarchy is shown in figures 1.2 and 3.1.

A detailed glossary is included.

[Albus8] RCS NASREM The NASA/NBS Standard Reference Model for Telerobot Control

System Architecture

This paper gives a history of the development of RCS and gives related references.

The first half of this paper describes NASREM and is essentially a summary of

[Albus5].

The abstract notes “There arefive major elements requiredfor the development of an

intelligent robot system. Four of these are architectures:

(1) Conceptual architecture,

(2) Functional architecture,

(3) Software architecture,

(4) Hardware architecture.

Thefifth element is the software development environment.”

The second half of the paper describes the servo level of an experimental

implementation built at NIST.

Care is taken to create an interface which supports the standard algorithms for robotic

manipulation. This was done by taking each algorithm for servo control, splitting it into

the (functional) parts which belong to the task decomposition, world modeling, and

sensory processing modules and deriving the interfaces which will support these

algorithms.

A similar analysis has been done at the primitive level, and is planned for other levels.
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[Albus9] RCS Concept for a Reference Model Architecture for Real-Time Intelligent Control

Systems (ARTICS)

The content of this paper (advocating the development of ARTICS) is the same as that

of [Albus3]. Most of the text here is the same as or similar to the text in that paper.

This paper refers to RCS briefly, but does not have a discussion of it of the sort included

in [Albus3]. All three figures in this paper appear in [Albus3].

The paper includes a few details of a survey about the need for ARTICS and an

appendix listing potential reference model components which is not in [Albus3].

[AlbuslO] RCS RCS: A Reference Model Architecture for Intelligent Vehicle and Highway

Systems

The first section describes RCS briefly, showing the architecture for the Army Robotics

Testbed vehicle as an example.

The bottom layer consists of actuators and sensors. At the top of the hierarchy are goals

from a higher level controller to groups of vehicles. The control system is designed for

closed loop control. That is, sensory feedback interacts with goal decomposition at each

level to correct for disturbances.

The second section gives a 7-level RCS architecture for an intelligent vehicle and

describes briefly for each level what the level does, what sort of data is in the world

model at that level, and what sensory processes go on at that level. The levels of the

hierarchy, from the bottom up, are:

(1) actuator servos,

(2) steering dynamics,

(3) steering and attention coordination,

(4) vehicle path planning,

(5) road segment planning,

(6) trip segment planning,

(7) trip destination planning.

The third section gives a 7-level highway control system architecture with the same
sorts of information as the second section. The hierarchy is:

(1) high bandwidth communications: to modulate communications transmitted

for individual vehicles,

(2) signal control: produces signals to control traffic lights and generate the

desired messages displays,

(3) lane control,

(4) road section,

(5) segment control: of a particular road segment for a limited duration,

(6) region control: of a specific region of the highway, limited in duration.
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(7) statistical input regarding traffic statistics from level 6 modules.

[Albusll] RCS Toward a Reference Model Architecture for Real-Time Intelligent Control

Systems (ARTICS)

This is a straightforward condensed version of [Albus9].

[Auslanderl] Real Time Control Softwarefor Manufacturing Systems

Defines the term “real time” well.

“Real time software is characterized by thefollowing criteria:

1. Delivery of the result at the right time is critical to correct system

operation (rather than a convenience).

2. [The] software sequence must be responsive to events in the physical

world (i.e., outside the computer).

3 . The operator (ifthere is one) must be able to interact with the software

in a substantive way, without interfering with control activities.

4. A number ofsemi-independent activities must be coordinated.”

The paper uses the example of controlling a saw to describe real-time systems.

This paper is an excellent introductory-level (for technical people) presentation of real-

time control problems and control systems. It discusses control hierarchies and has an

excellent discussion of synchronous vs. asynchronous control. Varieties of multitasking

are discussed. The paper discusses communications issues: synchronization, shared

memory, and networks. Programming languages and CASE tools are described briefly.

[Biemansl] A Systems Theoretic View ofComputer Integrated Manufacturing

This paper discusses properties of CIM architectures. It gives an example of comparing

the relative merits of two architectures and offers general rules for evaluating

architectures, such as:

1. Avoid unnecessary complexity.

2. Define architectures unambiguously.

3. Specify architectures genetically.

4. Develop specific systems from abstract architectures (only two levels

of architectural definition are discussed: functional or task description

architectures and physical implementation).

5. Use decomposition.

6. Separate independent concerns.

7. Define and analyze interaction of components.

8. Analyze how variation in components affects the performance of the

organization as a whole.

9. Describe relevant information flows.
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The thesis is that "good” CIM architectures specify a production organization

unambiguously at a high level of abstraction and in generic terms, as a configuration of

components. The architecture should allow us to understand how variations in each of

the components affect the system as a whole.

The authors emphasize that a statement of the purpose that the CIM architecture serves

is a highly necessary component of a successful CIM architecture which is often

omitted.

A systematic approach for designing a reference model is described. The steps are as

follows:

(1) Describe the target organization with respect to its interactions with its

environment

(2) Identify components of the organization.

(3) Separate tasks into as orthogonal concerns as possible.

(4) Describe interactions between separate tasks.

The article goes on to demonstrate the construction of a reference model for a

production organization. The model developed recognizes task planning, management,

and execution functions as distinct. Specific functions for each hierarchy level for the

executor are given. The manager’s function is to adjust the task of the executor based

upon changing conditions. Subfunctions of the manager include that of the master

planner (interfacing with business concerns such as product portfolio, production

capacity or production costs), product and process development (development and

selection of production plans), execution supervision, and monitoring.

The reference model includes the capability to reconfigure the tasks, resources,

physical layout, etc. of the organization. This is a more demanding requirement than

dynamic reconfiguration, which is also expected, since dynamic reconfiguration does

not include defining new tasks.

This paper is more inclusive than most of the architecture papers reviewed, in that it

includes the ideas in the previous paragraph, while most other do not.

The paper is well-written, cogent, and convincing.

[Biemans2] Reference Modelfor Manufacturing Planning and Control Systems

This paper describes in detail the Manufacturing Planning and Control System (MPCS)
which is a top-down design and an abstract specification of an integrated manufacturing

planning and control system. This architecture is said to span from enterprise to

actuator.

"A MPCS is decomposed into a factory controller’ concerned with the negotiation task

and a ‘shop’ concerned with the processing task. Figure 4 illustrates the

decomposition. Factory controller and shop are distinct components that are

simultaneously operational and that interact by exchanging messages’’
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The philosophy is to specify the behavior of the components, their purpose, and a

structure that defines which components may cooperate. Tasks give the goals of

actions, and the structure shows how each component contributes to the organization.

Defining “behavior” includes defining the inputs and outputs of the module and

specifying the command and status messages possible between components and their

temporal ordering.

An MPCS system:

“1
. aims at earning a target amount ofmoney and gaining a target market

by buying and selling certain types of products in certain target

numbers”
"2. negotiates the exchange of products for money and exchanges

productsfor money with customers and suppliers.”

Figure 5 shows the “Reference Model for MPCS at a Glance .” The model has nine

levels: company, factory, shop, workcell, workstation, automation module, equipment,

device, sensor or actuator.

The paper states that consistency is the primary design principle for human

understanding of the system and underlies all principles of quality of the system.

Resultant quality characteristics are: separation of concerns, generality, and propriety.

Propriety is the statement that inessential tasks should not be introduced.

In the view of this author, the fact that certain information should be shared is required

by the architecture, but not how it should be shared. Each component has multiple

layers of decomposition, but it appears that only adjacent layers know about the

subordinate layer’s internal structure.

The paper contains a detailed list of the functions of the shop controller. Functions

include:

(1) controlling the amount of inventory of some key parts to be able to dispatch

products within the procurement lead time,

(2) managing time lags to acquire stocks,

(3) managing stocks with respect to cost and risk of under- and over-estimating

the cost and utility of maintaining stocks.

This functionality is typically embodied in a manufacturing resources planning system,

but manufacturing resources planning systems do not usually take into account demand
forecasts and limits in processing capabilities, nor do they aggregate demands for

individual products to reduce variance in forecasts of demand.

The workcell controller is the portion of the controller which is responsible for

executing commands from the shop controller. It determines who should perform part

processing and how this processing should be scheduled.
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Workcells are formed on the basis of how frequently they need to exchange parts-that

is on the flow of parts through the factory. This contrasts with the MSI and RCS view,

where grouping is based the resource’s involvement in decompositions of common
tasks. Whether these are in fact equivalent is unclear.

This architecture clearly limits the information to the module which needs it. No
discussion is given to shared information.

The proposed model is just the control hierarchy. The paper does not deal with other

issues: tasks, concurrency, resource allocation, etc.

[Rohmsl] RIA: Reference Modelfor IndustrialAutomation

This is an excellent meta-level paper for CIM architecture.

The paper points out the need to model CIM modeling itself. It presents two key

components a CIM reference Architecture:

(1) a blueprint for applying CIM in discrete parts manufacturing,

(2) a language for expressing the architecture (called a base model).

The authors see the industrial enterprise as a real-system/information system

combination. They contend that due to the unavailability of standards, information

exchange required for the implementation of just in time (JIT) technology may be

impossible.

The descriptive framework (section 3) is particularly strong. Nine dimensions for

modeling CIM are identified:

(1) modeling level (one of: reality, models of reality, models of models),

(2) language level (level of modeling language used),

(3) aspect (set of views, e.g. functions, information, resources),

(4) composition (global to detailed),

(5) scope (type of activity),

(6) representation (modeling language used),

(7) product life cycle (design, production, maintenance, etc.),

(8) actuality (to be vs. as is),

(9) specification level (generic to fixed - how much choice left).

Section 4 proposes decompositions of each of the nine dimensions into points or

regions. For example, the modeling level dimension has three points: CIM Framework,

CIM Models, CIM in Practise.

Section 5 presents initial ideas for a CIM reference architecture, with the beginnings of

a language for expressing it. The authors conclude "It is our intention to develop a

complete CIM reference architecture expressed in a CIM Rase Model that covers all

dimensions
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[Boykin 1] CAM-I CIM Reference Model

This paper presents an extremely brief overview of the CAM-I CIM reference model.

The application scope was oriented to discrete parts, the life-cycle scope was product

R&D, marketing, production, and field support, and the organizational scope was

organization-wide. Attachment A (a single figure) shows a very high-level view of the

architecture.

[Brooks 1] Elephants Don*t Play Chess

Sections 1 and 2 of this paper discuss approaches to the control of robots.

Section 3 discusses the "physical grounding hypothesis

"

and presents the

"subsumption" architecture. The subsumption architecture "emphasizes ongoing

physical interaction with the environment.”

"The [subsumption] behavior language groups multiple processes (each of which

usually turns out to be implemented as a single AFSM [augmented finite state

machine]) into behaviors. There can be message passing, suppression, and inhibition

between processes within a behavior, and there can be message passing, suppression,

and inhibition between behaviors. Behaviors act as abstraction barriers; one behavior

cannot reach inside another.”

Section 4 describes the performance of seven robots constructed using subsumption

architecture. The robots have behaviors such as moving around without bumping into

things, hiding, and seeking and taking soda cans.

[Chenl] CIM-OSA An Integrated CIM Architecture - A Proposal

This paper argues that an architecture should include both an architecture design

specification and a method for building instances.

Proposes the "GRAI Integrated Method (GIM)” , which combines with the CEM-OSA
architecture.

The paper is extremely general.

[Davis 1] Generic Architecturefor Intelligent Control Systems

The section on "Functional Description ofthe Generic Control Module" gives the four

major functions of a controller as: assessment, optimization, execution, and monitoring.

Error recovery is considered in the section "What happens when a deviation occurs?”

.

This paper explicitly builds on [Jones4].

[Diltsl] The Evolution ofControl ArchitecturesforAutomated Manufacturing Systems

This paper gives a comparison of architectures for automated manufacturing systems.

It discusses robot control architectures for manufacturing briefly.

Issues discussed include:

(1) reliability,

(2) fault tolerance,
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(3) error recovery,

(4) modifiability,

(5) extensibility,

(6) reconfigurability,

(7) adaptability,

(8) resource allocation.

The paper does not discuss data handling as separable from control. It assumes data

flow is similar to control flow.

The paper discusses four main architectural approaches:

(1) centralized,

(2) proper hierarchical,

(3) modified hierarchical,

(4) heterarchical.

The relative merits of each type for handling the issues listed above are discussed,

including a table of them.

The paper seems enthusiastic about heterarchical architecture but admits that there are

unsolved issues (interprocess communications, bandwidth, unavailability of

commercial software) and does not discuss the problems of scheduling and figuring out

what a heterarchical system will do.

[Domierl] Evaluation of Standards for Robot Control System Architectures - Final Report

Executive Summary

The intent of the reported study is to: “Identity and evaluate existing control

architecture concepts w.r.t. their suitability as a reference modelfor European space

Automation and Robotics (A&R) control systems.” (p. 8).

The need for a unified robotics control architecture arises from:

1. Complex controllers will have a lifetime of up to 30 years.

2. Sophisticated control and intelligence can’t be provided on board at

this time.

3. Control systems will be developed in a multi-vendor environment.

Their idea of a reference architecture includes:

1. unambiguous and unified vocabulary,

2. modular partitioning of development tasks,

3. reusable modules which are easy to interface to,

4. ability to incorporate emerging technologies in the architecture.

Includes some discussion (in sec. 4) of what a functional reference model is:
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“A functional model of a control system is a description of the functional as well as

information architecture of the control system reflecting the breakdown and

interrelation of all subfunctions necessary to hierarchically decompose a global goal

(task input) down to a level ofelementary executions.” (p.23).

Four different viewpoints of the functional aspects of an architecture are given:

(1) function - what has to be done,

(2) application - why it has to be done,

(3) operational - by whom and where it must be done,

(4) implementation - how it is done.

The paper evaluates NASREM and alternative architectures including a representative

industrial robot controller (sec. 3.3.1), ESPRIT 623 architecture (sec 3.3.2), IMAS (sec.

3.3.3), and Intelligent Robot Control (sec. 3.3.4).

NASREM strengths: complete, well-documented, hierarchical structure strong,

task decomposition well defined.

NASREM weaknesses: higher levels not yet elaborated, structure of global data

system is unclear, ambiguous information architecture, concept and structure of

safety system is unclear.

Industrial Robots: They found that industrial robots were special purpose,

proprietary, undocumented, and unextendable.

ESPRIT 623 strengths: generally applicable, integrated error recovery planned for,

good growth potential.

ESPRIT 623 weaknesses: unclear general architecture, missing execution

functions, missing sensor data processing functions, missing project

documentation, specific to automatic operation.

IMAS strengths: good hierarchical structure, forward control, nominal feedback

very well described, world modeling well defined, re-planning is planned for.

IMAS weaknesses: information architecture not documented, lack of overall

architecture documentation, generality of architecture is questionable, non-nominal

feedback not well separated from the rest of the architecture.

The paper reaches the conclusion that no existing architecture is suitable for the

intended use and proposes a new architecture. The new architecture is summarized in

this paper and presented in detail in [Domier2] (see next entry).

The paper proposes documentation requirements for reference models briefly in section

4.4 (page 32).
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[Domier2] Baseline A&R Control Development Methodology Definition Report

This (long and detailed) paper proposes a reference architecture for European space

Automation and Robotics (A&R) control systems. The architecture is intended to be

suitable for at least robot systems, surface roving vehicles, and dedicated automation

equipment.

A three layer hierarchy (A&R Mission, Task, and Action) is proposed (figure 5.3.2- 1,

page 52). The use of a hierarchy is justified in 5. 1.2.1, but no rationale is offered for

why three layers are suitable, rather than four, six, or a variable number depending upon

the application.

Each controller has three major modules: nominal feedback functions, forward control

functions, and non-nominal feedback functions (figure 5.4. 1- 1 ,
page 53). No rationale

is offered for this decomposition in this paper, but other papers in the same series are

referenced.

Forward Control Functions:

( 1 ) partitioning incoming commands into jobs for subsystems,

(2) decomposing each job command into a logical sequence of subtasks, with

appropriate timing constraints,

(3) identifying execution functions and directing subdominants to the servo

level.

Nominal Feedback Functions:

(1) sensor data measurement functions (at the lowest levels),

(2) (logical) sensor data processing functions (filtered and processed sensor

data),

(3) process oriented sensor data processing functions (transforming sensor

readings into quantities meaningful to the application process),

(4) control oriented data processing functions (providing processed information

based on a knowledge of control algorithms).

Non-nominal Feedback functions

(1) monitoring functions for both Nominal Feedback and Forward Control

Feedback functions,

(2) failure diagnosis functions,

(3) failure identification functions,

(4) failure recovery functions.

The interconnections between layers and modules are so numerous that control system

behavior and performance may be hard to predict. The ability of non-nominal feedback

to do planning and give “directives” to forward control looks particularly like a

troublemaker.
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A highly-structured methodology for architectural development is presented. The

methodology uses the Structured Analysis and Design Technique (SADT). The steps

and documents required by the methodology are shown in figures 3.3-1, 3.3-2, and 3.3-

3 (pages 17 and 19). The documents include:

(1) Activity Script,

(2) Application Architecture,

(3) Operations Architecture,

(4) Logical Model of Control System,

(5) Functional Reference Model (FRM),

(6) Application Reference Model (ARM),

(7) Operations Reference Model (ORM).

The Activity Script is prepared using an Activity Analysis Methodology (ActAM) and

written in an Activity Scripting Language (AcSL) which has not been rigorously

formalized. The control development methodology (CDM) is discussed in detail in

section 8.

Appendix 2 gives the definitions of many tasks and some activity scripts, as examples.

State information flows both up and down the hierarchy.

The paper does not deal much with database, communications, resource allocation, or

reconfiguration issues. There is no discussion of world modeling.

A detailed glossary is included. In general, definitions and the use of defined terms are

handled quite well.

[Duffiel] Nonhierarchical Control ofManufacturing Systems

This paper is a briefwork in progress report on a heterarchical control system for a work

cell, including a milling machine, a vision system, a robot, some part buffer stations, a

simulated mill, and a simulated wash station.

Issues which must be addressed in a nonhierarchical architecture are:

(1) performance of commercially available communications networks in regard

to the capacity and response time in supporting such intensive messaging,

(2) optimality of totally distributed scheduling,

(3) real-time optimization of the system,

(4) deadlock avoidance, detection and resolution.

[Duffie2] Nonhierarchical Control ofa Flexible Manufacturing Cell

This paper is a brief report on a heterarchical control system for a work cell, including

a milling machine, a vision system, a robot, some part buffer stations, a simulated mill,

and a simulated wash station. The paper is much like [Duffiel].
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The paper describes the implementation of centralized, hierarchical and heterarchical

prototypes and gives a comparison of their performance.

Results are said to show heterarchical advantages of
"
increased fault-tolerance,

inherent adaptability and reconfigurability, decreased complexity, and reduced

software development cost.” With regard to optimization, the paper says “the

fundamental objective of maintaining local autonomy contradicts objectives of

optimizing over-all system performance,” and says optimization techniques are needed.

The paper reports that ",network communications and multi-tasking operating systems

were requiredfor the heterarchical control systems and hence are quite complex”

The control system is said to use negotiation, but is not said to include bid and contract

procedures.

Information is kept locally rather than globally.

[Duffie3] Fault-tolerant Heterarchical Control of Heterogeneous Manufacturing System

Entities

The paper gives a list of design principles for producing a system of cooperating

autonomous entities (i.e. a heterarchical system) with a high level of fault-tolerance.

Types of system entities:

(1) material handling robot entity software,

(2) part processing entity software,

(3) pallet entities,

(4) human entity software,

(5) manufactured part entity software.

The human entity is intended to get the system working again when it breaks or

otherwise fails to work right.

Control is accomplished by “dynamically negotiated transactions" among entities.

Each of these entities communicates with each other, asking for services. Contracts are

not cemented until the last possible moment. The requestor queries all parties, then

evaluates responses and reserves a space in the schedule. Information about the part is

kept with the part entity. Information about the machine tool is kept with the machine

tool entity. The paper claims that this eliminates the need for complex databases which

can have access and consistency problems.

Software entities consist of a communicator and a controller. The controller software

implements the control logic for each entity. It is not clear from the article where the

control logic comes from, if it is predetermined or parsed in from some sort of plan.

However, it does state that this software is responsible for selecting the machine code

which must be run. The communications aspect is handled by a general-purpose

distributed operating system which is independent of the manufacturing software and

is generic. The communications code of the entity can receive asynchronous messages
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while the controller is executing its required steps. The communications code is event-

driven. Examples of messages are reservation transactions, fault announcements or

controller status messages.

To provide for system fault-tolerance, an entity is not required to respond to any

message it receives and each entity should assume that transmitted messages will not

be responded to by other entities. This ensures that there are no master-slave

relationships between the entities.

“In heterarchical systems there is one generic type of system-level fault: a failure of

entities to establish, maintain, and terminate the relationships required to achieve the

goals ofthe system. A heterarchically controlled system inherently toleratesfaults in its

entities because of its high level of local autonomy. Within individual entities, high

local reliability can be achieved using conventional hardware and software design

techniques. This ensures that localfaults will be minimized.”

The paper gives the example of fault recovery from the state “waitfor message from

processing entity indicating processing complete.” The entity will check to see when it

has been too long since the message arrived. When it realizes this, it transmits

(broadcasts) a fault message. It recovers from the fault by continuing to wait for the

desired message, and awaits advice from another entity. Sample responses include:

from human, “continue” or “go to output station" assuming some manual intervention

has occurred. This does not prohibit other responses for other actions from being used.

The communications network is used by entities to dynamically negotiate transactions

with other entities for purposes of real-time scheduling of part processing, part

transportation etc. This dynamic resource allocation makes the control system tolerant

of faults such as unavailable machines.

A prototype system has been constructed at the University of Wisconsin at Madison

including a machining cell (with a machining center, a robot, some part buffer stations,

and several simulated stations), and an assembly cell with a pallet transportation system

and three robots, all connected by a local area network.

The entities have keyboard and voice recognition/generation capabilities. Humans rove

through the system and interact with the systems as a peer. The human is not required

to interact with the systems and they are not required to acknowledge or act on the

advice of the human. The distributed operating system for EBM-PCs was called MULTI
and allows concurrency for 250 Pascal programs on networked PCs.

The conclusion to the paper notes: “Local decisions made by entities are not globally

optimal, and real-time optimization entities may need to be developed that can collect

information in a heterarchical system and influence the operation of other entities

without taking control. Deadlock avoidance is also an important issue.”

[Feldman 1] RCS A Submarine Maneuvering System Demonstration Using a Generic Real-Time

Control System (RCS) Reference Model

This paper gives a very brief overview of RCS and focuses primarily on the simulation

and animation techniques used in the submarine project.
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The paper highlights the usefulness of having a simulation environment in which to test

control systems (although the paper itself discusses this only briefly in section 5).

The system is designed to perform navigation in a hostile environment while

compensating for naturally occurring temperature and salinity perturbations. This

application requires a high degree of autonomy.

This implementation of the architecture uses a clock to regulate the execution cycle.

Each controller is built using a generic controller template and generic functions. For

example, this application has depth control and Dive/Rise control. Each controller is a

closed loop control unit. Shared memory or Common Memory is used to move data

between the modules.

Simulation permits the asking of
“
what if ’ questions. Parallel to the controller

structure, a simulation hierarchy has been constructed. These modules use a

communications framework similar to that of the controllers.

To date, only the helm, depth and propulsion control system have been simulated. The

following were simulated: actuators, submarine dynamics, ice mapping, environment

(via fractals), and sonar.

[Fialal] RCS memorandum on JeffBecker’s evaluation ofNASREM

Jeff Becker of Martin Marietta had evaluated NASREM. Fiala comments on Becker’s

evaluation and discusses several NASREM issues.

The notions of atomic unit and process, as presented in [Fiala2] are discussed briefly.

The need for levels of architectural definition forNASREM is highlighted at the end of

section 1, although the term is not used.

Section 2 discusses the relationship between the NASREM architecture and software

architecture.

Section 3 discusses global memory.

Section 4 discusses alternative approaches for organizingjob assignment, planning, and

execution modules in NASREM.

[Fiala2] RCS Note on NASREM Implementation

This describes a NASREM implementation done in the RSD Intelligent Controls

Group. The architecture is viewed as appropriate only for the software parts of the

control system, as the hardware cannot be expected to have the requisite flexibility.

This implementation makes use of processes which can be activated or inactivated to

produce behavior similar to dynamically changing the control hierarchy: where a

controller can be controlling one of two grippers, for example. Inactivation is an

important real-time concept, as it allows for one process to be inactivated, so that it does

not consume processing cycles, and another process can use that resource.
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In this implementation, there is a single Task level for an entire robot. For each major

equipment subsystem, there is an elemental-move level. For each separate piece of

equipment that must be controlled, there is a separate servo level.

When the control loop is open, the Primitive level is permitted to interface directly with

the sensors. Parallelism of the architecture is exploited. World modeling activities are

going on simultaneously with sensory processing and task decomposition activities.

The activities at each level also continue in parallel. In this implementation, using the

innate parallelism of the processes motivates the task decomposition.

Section 2 emphasizes hierarchical decomposition, including when hierarchical levels

might be omitted.

Section 3 discusses the idea of atomic units. Tasks have been decomposed into atomic

units which can be executed in parallel. Typically, the atomic units are executed on a

single processor. There is a trade-off between communications overhead and

decomposition to use parallelism. This trade-off is used to determine the atomic units.

Four criteria for when to put separate activities into separate atomic units are given:

parallelizability, asynchronicity, communications overhead, and function

decomposability.

Section 4 discusses properties of atomic units and defines what a process is. Example
Ada code for how a process might be implemented is given.

Processes> have the following characteristics:

(1) continuous cyclic execution,

(2) read-compute-write execution cycle,

(3) concurrency.

(4) interfaces through global data system,

(5) inactivation.

These implementations use ADA, which provides explicit support for tasking. Using
this support, it is possible to encapsulate all task-local variables and to make an
application relatively portable. In changing the process distribution of an application, it

is necessary only to rewrite the “main” function for each processor in the system.

[Fiala3] RCS An Approach to Telerobot Computing Architecture

This is a technical paper that assumes an RCS NASREM architecture without ever
mentioning NASREM. The focus of the paper is a computing architecture for
controlling a telerobot capable of 10 micro second around the time loop.

The document gives a basic design for a telerobot. It focuses on the software and
hardware design with examples taken from the servo level. It discusses the hand-
controller subsystem for the operator interface and the robot manipulator. The paper
discusses the teleoperation mode. In this mode the two systems communicate by
common memory.
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The control system for components needs to be distributed in order to have sufficient

processing power for the complex algorithms. However, care must be taken only to

distribute control which is truly local. Inappropriate distribution of control results in

high data transfer rates.

In this application, all of the processors reside on a single backplane. Different

execution speeds can be performed on different processors, resulting in an ability to

control the performance of the control system through variation in the distribution and

timing of the software on the hardware.

A detailed analysis is presented of an implementation of a Martin Marietta control

algorithm, including timing considerations and the assignment of computing processes

to processing hardware.

[Fiala4] RCS Manipulator Servo Level Task Decomposition

This paper gives a brief outline of RCS in section 1. That section also describes the

particular application, control of robotic manipulators (electric-powered manipulators

with serial joints and unbranched kinematics), which the rest of the paper covers.

Section 2 gives the detailed architecture of the servo level control for the application.

Sections 3 and 4 discuss the servo level job assignment interfaces and operation. Job

assignment modules have interfaces to the upper task decomposition hierarchy,

operator control, the servo level world modeling hierarchy, and the planning module.

Sections 5 and 6 discuss the servo level planning interfaces and operation. The planning

module has interfaces to world modeling and job assignment at the same level.

Section 7 discusses the execution module interfaces. The execution module has

interfaces to world modeling, from planning, and to motor control.

Section 8, "Execution Operation"

,

discusses the ",manipulator control problem"

,

presents a number of manipulator control schemes, and discusses timing

considerations.

This architecture has a many-read, many-write memory structure. Local copies of data

are not maintained due to the difficulty of assuring consistency.

For each interface, variables (and their types) are given which contain the critical

information for that interface. Examples include: position, velocity, acceleration, jerk

variables (which are continuous), and state variables (for which there is an enumeration

of permitted values).

The bibliography is described as forming "a comprehensive review of the basic

concepts ofmanipulator servo control.”

The paper includes an index.

This paper is a good example of a fine-granularity architecture.
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[Griesmeyerl] Generic Intelligent System Control (GISC)

This is an incomplete draft of a description of the GISC concept and software that has

been put into a “GISC-Kit” software toolkit.

“GISC is an approach to the construction of controllersfor complex robotic systems.”

“GISC-Kit is the library of software modules that the designer of a robot system

controller can accessfor an actual implementation.”

GISC is not a complete architecture. It places emphasis on communications, but also

includes some informal principles of building control systems.

[Griesmeyer2] General Interfacefor Supervisor and Subsystem (GENISAS)

“GENISAS is a GISC-Kit package that provides general communication software

interface capabilities (such as command processing and event handling) between the

supervisory control system . . . and subsystems”

.

Chapter headings are: GENISAS Basics, Getting Started, Tools, Subsystem Servers,

Clients, Supervisors, PassThroughClientServer, Advanced Topics.

The bulk of this paper (about 200 pages) is Appendix B, the GENISAS Reference

Manual, which describes the C++ classes and functions that comprise GENISAS. The

appendix is in the form of heavily commented source code.

[Harhalakisl] Architecture ofa Facility Level CIM System

This paper describes a method of maintaining the consistency of some of the common
data in the databases of three otherwise separate systems (CAD, CAPP, and MRP). The

paper does not deal with any other architecture issues.

[Hatvany 1] Intelligence and Cooperation in Heterarchic Manufacturing Systems

This is a brief paper in support of heterarchical systems (multiple, autonomous,

cooperating systems). The paper does not offer much justification for this support.

The author advocates heterarchies with two conditions:

( 1 ) Participants in the heterarchy must conform to certain rules, in order to obtain

certain privileges.

(2) The design, structuring and enforcement of a system of dual goals for the

distributed subsystems must be included. One set must be concerned with the

goals for local optimization, the other set must be concerned with global

optimization.

The paper says heterarchical systems need to be well thought out or they are anarchic

but does not suggest methods for building heterarchical systems.

[Herman 1] RCS Intelligent Controlfor Multiple Autonomous Undersea Vehicles

This paper presents the control architecture for the Multiple Autonomous Undersea

Vehicles (MAUV) project.
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The paper discusses the usual RCS elements of intelligence in section 2. Figure 5

illustrates them. The MAUV control architecture, as described in this paper, is standard

NASREM RCS, except that a planner manager is included.

State transition graphs are discussed. Figure 7 presents one.

Some novel features include the control of two semi-independent vehicles. The paper

introduces the idea of cooperation by identical planning.

The paper has seven pages in section 8 on world modeling; map representation and

updating, mainly.

[Herman2] RCS Real-Time Vision for Autonomous and Teleoperated Control of Unmanned
Vehicles

About two-thirds of the paper is given to a discussion of vision processing, which is

outside the scope of this annotated bibliography.

The paper describes standard RCS briefly; see figure 1.

Four different types of teleoperation and autonomy are presented on page 2.

Sections 2.1 and 2.2 briefly discuss task decomposition and world modeling at various

hierarchical levels.

[Herman3] RCS Real-time Hierarchical Planningfor Multiple Mobile Robots

This paper describes the MAUV project with two underwater vehicles. The hardware

is not described. Unusual features of this clear and well-written paper are the

description of cooperative behavior of autonomous vehicles (section 5) and the use of

real-time planning (section 6), including cyclic re-planning and planning updates. It is

also unusual that the communications system is one of the subsystems which must be

explicitly commanded.

The architecture is described in section 2, with reference to Figure 1 (a block diagram

of the architecture). Although the architecture described is clearly a variant of RCS, the

term RCS is never used. The architecture includes the usual SP, WM, and TD in six

hierarchical layers:

(1) Mission: converts mission to commands for groups of vehicles,

(2) Group: converts group commands to commands for individuals,

(3) Vehicle task: converts task commands into moves and actions for vehicle,

(4) E-move: converts moves and actions to intermediate poses,

(5) Primitive: finds smooth trajectories to achieve [a sequence of] poses,

(6) Servo: converts trajectories into signals for actuators and other physical

components.

Most of the paper is given to describing the task decomposition and how planning is

done for this system. The paper contains a detailed specification of each of the levels in

the decomposition, down to specific parameters and functions.
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In this version of RCS, the world modeling component simulates possible future states

of the world. “The goal ofthe sensoryprocessingfunction is to identifypatterns, events,

objects and tofilter and integrate sensory information over space and time.”

Plans for this application are represented as graphs with nodes representing actions and

arcs representing events. Execution is the process of carrying out a plan. Monitoring

consists of querying the world model for that event, then, if it has occurred, following

the appropriate arc. Plans are chosen by A* search of the planning space.

Cooperative vehicle behavior is achieved by ensuring that both subs have identical

software and world models at the mission and group level. When one sub gets major

new news, like detection of a new mine or hostile object, it must communicate this to

the other sub to keep the world models consistent.

The paper contains a detailed description of the planner manager and planner for the

group and mission level. The planner manger consists of two modules, job assignment

(which divides the task into jobs and sends each of these jobs to different planners to

schedule), and the plan coordination module (which coordinates planning by generating

constraints for the subordinate planners). If a planner cannot generate a plan within the

given constraints, the coordinator is responsible for generating new constraints.

Communications and sensors are subject to planning (section 4.3).

The system replans regularly based on all the world modeling conditions. The cyclic re-

planning time is determined by the planning reaction time. At the time when a plan is

needed, the best available plan generated so far is selected. The new plan replaces the

plan currently being executed.

For failure situations, there is an explicit Subtask Failure Re-planning module. This

replans for failures at the next lower level. So far this has only been implemented for

the level to handle imminent collision between the sub and the environment.

For each subtask command, a plan schema is used to provide all possible sequences of

actions which define that command. An interpreter traverses the plan schema. At each

node, it queries the world model to determine which arc to follow.

A node of a plan schema has two components: an alternative action component and the

context subroutine component. The alternative action component contains a function

that generates all possible alternative actions that can be considered when that node is

reached. Alternative actions are represented as operators on state space. The context

subroutine sets certain variables for the alternative action module.

Possible types of arcs in a plan are world arcs, which switch on world conditions,

constrained by plan time and execution time predicates. The second type of arc is an

else arc, which also has plan time and execution time predicates.
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[Horst 1] RCS An Intelligent Control System for a Cutting Operation of a Continuous Mining

Machine

This paper focuses on a variant of RCS, called “Barbera RCS” (BRCS). The paper

emphasizes tasks and controllers and says very little about sensory processing or world

modeling.

Section 1 briefly introduces the subject of “large-scale intelligent control systems” and

cites previous work on the subject.

Section 2.1 describes the scenario for coal mining (using a specific type of continuous

mining machine and method of mining called “room and pillar” mining).

Section 2.2 presents the task tree developed to deal with the job.

Section 2.3 presents an example of a state machine for the application.

Section 2.4 describes the controller hierarchy for the application.

Sections 2.5 and 2.6 discuss the simulation and animation used in the application.

Section 3 presents “principles ofthe BRCS methodology” . It includes subsections with

the following titles, which summarize the principles:

(1) problem analysis through task decomposition,

(2) controllers encapsulate tasks,

(3) hierarchical with strict chain of command,

(4) rule-based,

(5) finite state machine model,

(6) generic controllers,

(7) determinism,

(8) data integrity through multiple buffering,

(9) handshaking between controllers by command numbers,

(10) real-time execution through cyclic processing,

(11) straight-through execution of controllers; no internal looping,

(12) multiprocessing inherent,

(13) [has an issue discussion]

,

(14) problem domain understanding critical,

(15) generic processing pattern in all controllers,

(16) controllers small enough for human understandability.

Section 4.1 presents the details of several C language files used to implement the

control system and briefly describes the simulation of controllers, actuators and

sensors.

Section 4.2 describes system hardware briefly.
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Appendices describe (A) an overview of the underground coal mining environment, (B)

a continuous mining machine, (C) a C language state table, and (D) generic controller

templates in C.

[Huang 1] RCS A Reference Model, Design Approach, and Development Illustration toward

Hierarchical Real-Time Controlfor Coal Mining Operations

This paper describes standard RCS4 applied to coal mining.

The RCS overview is given in section 2. It includes the usual SP, WM, TD
decomposition with TD decomposing to PL, JA, and EX. Includes value judgment (VJ)

behind WM. Task decomposition methodology is discussed in section 3.

The job is to control a coal mining operation using Joy 14CM Continuous Miner coal

mining machines in a pillar and room mining scheme. Figures 8 and 9 show the

controller hierarchy. A task decomposition of the job is shown in figure 16, and each

task is described in the text in section 5. State transition diagrams for the plans used by

the control system are shown figures 17 to 29 in section 6.

A discussion of user interfaces at the various levels is given in section 7.

The paper includes almost nothing about the nature of the database.

Interesting technical points include:

1. Peer-to-peer data passing via a common superior in sec. 3.2.9,

2. Teleoperation is a mode - Compare this to Domier where teleoperation

is part of the
“
operations

”

refinement of the architecture.

[ISOl] International Standard ISO/TR 10314-1 Industrial automation - Shop floor production
- Part 1: Reference model for standardization and a methodology for
identification ofrequirements

Despite the title, this is not a standard, it is a technical report.

"... it is not possible, in view of the current state of the art of modelling for
manufacturing, to draw up an international Standard which would be complete and
precise, and which would not be too restrictive in this rapidly changing field. This

Technical Report is intended as a guideline . .

.”

The intent of the document appears to be to have a model of discrete parts

manufacturing that will help in identifying areas where standards are needed for shop
floor production.

Section 1.2 gives a list of 12 “manufacturingfunctions” in the organizational scope of
an architecture:

(1) corporate management,

(2) finance,

(3) marketing and sales,

(4) research and development.
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(5) product design and production engineering,

(6) production management,

(7) procurement,

(8) shipping,

(9) waste material treatment,

(10) resource management,

(11) maintenance management,

(12) shop floor production.

Interestingly, the list omits post-production activities such as customer support.

Section 2 gives terminology, but the terms are very loosely defined.

Section 4 discusses the objectives of manufacturing standardization.

Section 5 gives the proposed reference model. In it, a shop is hierarchically arranged in

four levels: section/area, cell, station, and equipment. A "
Generic Activity Model” is

described identifying four “Subjects” (control information, data, material, and

resources) and four “Actions" (transform, transport, verify, and store).

Section 6 describes a methodology for extracting areas of standards.

[Jacksonl] AMRF An Architecturefor Decision Making in the Factory ofthe Future

Most of this paper is a description of the AMRF: design philosophy, physical layout,

controller architecture, and equipment. Problems of sequencing and scheduling in a

discrete parts shop are discussed on the last few pages.

[Jayaramanl] Design and Development of an Architecture for Computer-Integrated

Manufacturing in the Apparel Industry Part I: Basic Concepts and
Methodology Selection

In this paper, which focuses on architecture for apparel manufacture, architecture is

taken to be detailed function descriptions and information flows. An apparel

manufacturing architecture, as shown in Figure 2, consists of three types of models:

dynamics models, information models, and functional models. The paper suggests

using the IDEFO, IDEF1, and IDEF2 modeling languages, respectively, for these three

layers. The three languages are described briefly.

The organizational scope, shown in Figure 1, is broad, including all functions of an

entire apparel enterprise.

“Computer-aided manufacturing (CAM) is the effective use ofcomputer technology in

the management, control, and operation ofa manufacturing facility through direct or

indirect computer interface with the physical and human resources ofthe company"

“Computer-integrated manufacturing (CIM) involves integrating computers into the

various operations ofan enterprise to produce the right product at the right price and

the right time."
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The model provides a framework for both the technical and economic implications of

automating a process. The functional and information architecture are closely related

and form the foundation on which the analysis, the dynamics model, is constructed.

Analysis of the present system serves as a basis for a future architecture which satisfies

the requirements set forth for the new system.

The methodology suggested is to analyze functions in terms of necessary inputs,

controls, mechanisms and outputs. A top level description of the functional view of

running an organization is given. The dynamics model consists of the behavior of the

system’s information, function and resources which vary over time. Models may be

formulated at varying levels of abstraction based on the purpose of the model.

The architecture proposed in this paper differs from other architectures by including the

dynamics model. Unfortunately, only a couple paragraphs are devoted to explaining the

model.

[Johnsonl] Towards a Distributed Control Architecturefor CIM

This paper says that distributed (heterarchical) control is better than hierarchical

control. The paper gives a brief, simplified description of heterarchical architecture and

suggests using object-oriented methods to construct interoperable modules for CIM. A
half page is devoted to what the scope of a CIM architecture should be. The paper

describes five “basic abstractions”:

(1) production resources,

(2) production orders,

(3) production schedules,

(4) production operations,

(5) production activities.

[Johnson2] Trends in Shop Floor Control: Modularity,
Hierarchy, and Decentralization

This paper describes briefly three types of architecture: centralized (exemplified by the

GE Fanuc CIMPLICITY system), hierarchical (exemplified by NASREM), and

heterarchical.

[Jones 1] Issues in the design and implementation of a System Architecture for Computer

Integrated Manufacturing

This paper focuses on having separate architectures for production management (which

includes manufacturing data preparation), data, and communications. The paper

discusses hierarchical control, but not in depth. It goes into more detail on data

modeling, database design, data administration, and communications.

The paper says “there is little hope that a single architecture for production

management will emerge which can serve as a reference model for all CIM
applications.” It suggests development of measures and tools to compare different

designs.

The paper does not deal with application areas other than manufacturing.
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[Jones2] AMRF A Proposed Hierarchical Control Model for Automated Manufacturing

Systems

This paper describes the AMRF. It includes the usual:

(1) controllers arranged
"
in a hierarchy in which the control processes are

isolated byfunction and communicate via standard interfaces,”

(2) tasks decomposed along control hierarchy lines,

(3)
"
Implemented in a distributed computing environment

”

(4) five level control hierarchy: facility, shop, cell, workstation,

equipment,

(5) material handling controlled as a workstation under cell,

(6) command-status controller interface protocol,

(7) process planning is done off-line for all controllers,

(8) IMDAS data system,

(9) network communications system with common memory.

The paper indicates that each controller would have a scheduler, but no global

scheduling or coordination of schedules across controllers is provided. Resource

management and dynamic reconfiguration are mentioned briefly as taking place at the

shop and cell levels.

[Jones3] Toward a Global Architecturefor Computer Integrated Manufacturing

This paper recommends “separate architectures for production management,

information management, and data communications”

For production management, (section 2) a hierarchy of control modules is proposed.

“Each module in this hierarchical structure performs three major control functions:

adaptation, optimization, and regulation. The adaptationfunction generates a run-time

production plan. The regulation function provides the interface between a module and

its immediate subordinates. ...It releases jobs to subordinates, monitors subordinate

feedback on those jobs, and guides subordinate error recovery. The optimization

function ... evaluates proposed production plans from the adaptation function. It

generates a list of tasks . . .for subordinates. . . It resolves . . . any conflicts and problems

with the current schedule identified by the regulation function.”

For information management (section 3), alternative approaches are presented and

evaluated. The three main functions of data administration are given as: query

processing, transaction management, and data manipulation. “It is our view that

separating the query processing and transaction managementfunctionsfrom the data

manipulation functions, producing a layered hybrid architecture, is essential for

effective distributed data management in CIM systems.”

For data communications (section 4), three fundamental ideas are presented:

(1) Use a common connection service specification for all communications
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between programs in a CIM complex.

(2) Transparently interconnect the physical networks.

(3) Optimize communications subnetworks to meet CIM complex needs. It is

recommended that the OSI model be used in a network with a single spine.

[Jones4] A Multi-level/Multi-layer architecturefor Intelligent Shopfloor Control

Section 2 reviews hierarchical and heterarchical control.

Section 3 describes "multi-layer” and "multi-level” control.

Section 4 gives a proposed approach for shop floor control.

"Each module in this stratified structure performs three major control functions:

adaptation, optimization, and regulation. Adaptation is responsiblefor generating and

updating plansfor executing assigned tasks. Optimization is responsiblefor evaluating

proposed plans, and generating and updating schedules. Regulation is responsiblefor

interfacing with subordinates, monitoring execution ofassigned tasks
'

’

Section 5 discusses integration. It recommends using a command-and-status protocol

between superiors and subordinates and separating control, communications, and data

handling.

[Jones5] AMRF A Production Control Modulefor theAMRF

Presents the AMRF control system, a five-layer hierarchy (facility, shop, cell,

workstation, and equipment) with standard controller modules. Each controller has a

production manager, a queue manager, and a dispatch manager. A command-and-status

protocol is used, as described in section 5.2.

A process plan format is described in section 5.1.1. World models are described in

section 5.1.2. A distributed global database is mentioned.

[Joryszl] CIM-OSA CIM-OSA Part 1: Total Enterprise Modelling and Function-View

Gives an overview of the CIM-OSA project and approach. CIM-OSA is focused on

"discrete manufacturing enterprises"

.

Figure 1 shows the "CIM-OSA cube”, entitled "Overview of CIM-OSA Architectural

Framework” . The three dimensions are:

(1) stepwise generation (discrete values: function, information, resource,

organisation),

(2) stepwise instantiation (discrete values: generic, partial, particular),

(3) stepwise derivation (discrete values: requirements definition, design

specification, implementation description).

CIM-OSA takes a very broad view of the scope of a CIM architecture. The life-cycle

includes:

( 1 ) system requirements specification,

(2) system design.
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(3) system description for build and release,

(4) system operation,

(5) system change.

CIM-OSA aims to go all the way to executable code.

Figure 5 uses a NIAM-like simple graphical information modeling language to show a

model of
"
Function-view Concepts

.”

The paper says CIM-OSA is not yet fully developed:
"
The next phase is ... to produce

partial modelsfor the reference architecture and to build prototypes . .

.”

[Jorysz2] CIM-OSA CIM-OSA Part 2: Information View

The paper focuses on data in CIM-OSA.

The paper uses a NIAM-like information model to describe
"
information-view

concepts

"

in Figure 1.

For design specification CIM-OSA uses the
“
entity relationship attribute” (ERA)

approach. A graphical notation for ERA exists and may be translated into "relational

diagrams” automatically.

SQL is also used for database access.

Normalization rules for translation to relational database structures have been built.

However, Section 3.6 says they might move to object-oriented data models.

[Joshil] A Scaleable ArchitectureforCIM Shop Floor Control

This paper reports on a three-level hierarchical architecture for a shop floor control

system (SCFS).

[Joshi2] Joshi, Jagdish; Desrochers, Alan; Performance Analysis of Network and Database

Transactions in a CIM System ; Proceedings of the 1991 IEEE International

Conference on Robotics and Automation; Sacramento, CA; April 1991.

"A petri-net based integrated model for the performance analysis of network and
database transactions generated by manufacturing clients for the computer

resources.”

"Approach is described to investigate the relevant system integration issues between

the logical and the physical access ofthe information in the manufacturing system. The

... approach proposes an integrated conceptual framework for modelling and

performance analysis of data flow and communication flow. This framework will

provide some answers to the impact of relative time scales on the coupling and de-

coupling of the various CIM systems and identify the time-scales where integration

becomes important."

It is important to understand the interaction between data and network flow in a CIM
system. Key questions are:

(1) What is the response time of database and network transmission and
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utilization of resources in the system?

(2) How does changing the mix of database events and network events affect the

behavior of the system in terms of the response time?

(3) What is the impact of changing the processing rate of different processors

located at either the local node or the remote node on the system

performance?

A CIM system can be modeled as a discrete event dynamic system (Petri nets). This can

be hybridized using statistics to form generalized stochastic Petri nets to model

distributed system behavior for real-time control.

“It is assumed that all resources are dedicated to a single control mission. Tasks are

pre-assigned to a node and remain unchanged throughout the control mission. Other

approaches include predicate/transition nets and tasks modeled as causal net.

[Juddl] Manufacturing System Design Methodology: Execute the Specification

Reports on a commercial tool for designing manufacturing systems (workstations,

cells, or individual lines) called XSpec, (executable specification). Specifications are

executed on a tool called XFaST (executable factory simulation tool).

The tool allows the logical design of physical and control elements which may be

interconnected via “pins" and “connectors" so that they exchange messages along

“paths" . The design may then be operated in a simulation.

[Junl] AMRF The Vertical Machining Workstation Systems

An example of an operating system written in source code for running controllers which

are finite state machine modules is given in section IH.

[Jungl] Implementation ofthe RAMP Architecture at an Established Site

This paper describes how the CIM architecture developed in the RAMP (Rapid

Acquisition of Manufactured Parts) project at the RAMP Test and Integration Facility

was being modified and applied at an existing manufacturing site, the Cherry Point

Naval Aviation Depot.

The paper provides a useful example of altering and specializing a CIM architecture.

Section 3.3 discusses the use of EDEFO and Yourdon-Demarco modeling methods, and

notes the inadequacy of IDEFO for some of their purposes.

[Klittichl] CIM-OSA CIM-OSA Part 3: CIM-OSA Integrating Infrastructure the Operational

Basisfor Integrating Manufacturing Systems

This paper describes information services in CIM-OSA.

Figure 5 shows the integration of data. The basic idea is that a system which wants data

uses a “front end service" to get it. The front end service uses a “data access protocol”

to provide the requested service. There are four types of front end services: application
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(e.g. CAD or CAPP), human, machine (e.g. robot or NC machine tool), and data

management The two data access protocols are:
"
business process services” and

“information services.”

It seems intended that any data which is not strictly local will be globally accessible.

It is recognized that communications services are needed, but communications is not

discussed at length.

Figure 1 1 contrasts CIM-OSA data integration with “standard” methods.

The paper does not deal with control issues.

[Klittich2] CIM-OSA From CIM to CIM-OSA a Step Ahead in System Integration

This paper discusses CIM-OSA. It says the draft specification was to be released at the

end of 1991.

This papers names several existing ESPRIT projects that are “CIM-OSA oriented" and

deal with similar issues as CIM-OSA. These are: MULTTCON (Multilevel Shop Floor

Control) which schedules controllers, and DSDIC (Design Support for Distributed

Industrial Control Systems).

“Release 1 will cover the architectural elements for Information Integration.” The

Release 1 architecture is shown in Figure 3. Release 1 also includes a Communication

Service. The information architecture looks like an AMRF IMDAS.

In the Release 1 architecture, each application has a database divided into private and

public parts (shown in Figure 4). To deal with public data, each application has two data

service modules:

(1) an application front end module connected to the application,

(2) a data management module connected to the public part of the applications’

database.

The two modules are connected to a system-wide data agent.

It appears that all non-private data is intended to be globally accessible. There is no

provision for direct data exchange between applications.

[Kramer1] RCS EXPRESS SchemaforNASREM

This is an EXPRESS schema which models the NASREM architecture. It covers

individual controllers, a hierarchy of controllers, and tasks. The controller model

includes the notion of a “prototype" controller, for which there may be several

instances in a hierarchy.

[Leake 1] RCS The NBS Real-time Control System User’s Reference Manual

This is a users manual for a programmable implementation of RCS. The

implementation itself is called RCS in the document.
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The implementation is for controlling robots. An interface to a Unimate Puma 760 robot

is part of the software provided by NBS. The implementation requires specific

computer hardware (Intel MULTIBUS with Intel 86/30 computer boards), operating

system (FORTH), and language (SMACRO, FORTH, and 8086 assembly language).

The architecture of the implementation is described in Chapter 3, although the

controller hierarchy (consisting of four levels: task, path, prim, and joint) does not

appear until the beginning of Chapter 10 in Figure 10-1. The building blocks of a

hierarchy are called “functionally bounded modules
"
rather than controllers.

The commands available at each level are presented in chapter 10.

Plans are embodied in state tables.

Chapter 4 describes hardware and software components of the application.

Chapter 5 gives installation procedures.

Chapter 6 presents “Basic Operations” (starting the system, moving from one board to

another, locating source code, loading code, executing tasks and routines, saving and

rebooting the system, editing a block of code, example dialogue, using printing utilities,

using tape utilities, and shutting down the system).

Chapter 7 describes SMACRO.

Chapter 8 discusses communications.

Chapter 9 describes the “Robot Sensor Language (RSL “RSL is a high-level, task

description language designed for programming robotic tasks in which the control

system, RCS, uses sensors to control the robot.”

Additional chapters and appendices give extensions, examples, debugging techniques,

user word summary, etc.

The paper includes a glossary and index.

[Littl] The Development ofa CIM Architecturefor the RAMP Program

The paper focuses on how the RAMP architecture was designed and what it is.

The RAMP Generic Model has seven “Top Level Components" :

1. production and inventory control

a. capacity requirements planning,

b. production control,

c. order entry,

d. material inventory management,

2. manufacturing

a. a. schedule manufacturing cell,

b. manage maintenance,

c. coordinate/monitor manufacturing cell,

d. manage indirect inventory,

e. workstation control,
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f. transportation control,

3. manufacturing engineering

a. create process plans,

b. evaluate problem cause,

c. generate RAMP PDES,

4. quality

a.

b. generate quality reports,

c. coordinate disposition of quarantined part,

d. assemble part pedigree,

e. generate part quality record,

f. resource certification,

g. information management,

h. communications,

i. control.

This document goes beyond most others in its attention to peripheral but necessary

activities.

Control of shop floor activities falls under item 7 above. Control is arranged in a five-

level hierarchy using command and status messages. Little detail of the implementation

is provided.

[Lumial] RCS The NASREM Robot Control System Standard

Section 2 gives a brief summary of the NASREM architecture. The introduction and

subsection 2.1 describe the six-level “hierarchy" of layers of SP, WM, and TD (figure

1) as well as the spatial and temporal decomposition of tasks (figure 2). Subsection 2.2

discusses world modeling, 2.3 sensory processing, 2.4 operator interfaces.

Section 3 covers servo level task decomposition: “Servo is responsiblefor controlling

small dynamic motions ofthe manipulator"

.

Section 4 deals with primitive level task decomposition.

[Lumia2] RCS NASREM as a Functional Architecturefor the Design ofRobot Control Systems

Section 1 discusses the general issue of control architectures.

Section 2 briefly discusses three proposed control architectures: Saridis’s “intelligent

control”, Brooks’s “subsumption", and Shafer’s “CODGER ”

.

Section 3 briefly describes NASREM.

Section 4 describes the implementation at NIST of the NASREM servo level for a

robotic manipulator.

Section 5 revisits the comparison of architectures.

[Lumia3] RCS NASREM: Robot Control System and Testbed

Section 1 describes how NASREM might be used as a testbed to compare different

algorithms experimentally.
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Section 2 is a brief summary of NASREM as outlined in more detail in [Albus5].

Section 3 describes a servo (lowest) level task decomposition for NASREM as applied

to a robotic manipulator.

Section 4 describes a primitive (next to lowest) level task decomposition for the same

application.

[Malhotral] Malhotra, Rajeev; Jayaraman, Sundareson; Design and Development of an

Architecture for Computer-Integrated Manufacturing in the Apparel

Industry. Part II: The Function Model Textile Research Journal; Vol. 60, No.

6; June 1990; pp. 351 - 360.

This paper gives steps for modeling:

(1) attaining thorough understanding of the manufacturing enterprise and the

focus of the modeling effort,

(2) establishing the purpose of the model,

(3) determining the context - the boundaries of the domain of the model,

(4) establishing perspective from which the domain is to be viewed for modeling

purposes.

For the model they propose, they have divided the functions into three categories based

upon temporal resolution:

(1) strategic decision-making (corporate management),

(2) tactical decision-making (production planning, inventory

management, quality control),

(3) operational decision-making (day-to-day decisions in the factory - control).

The article then describes the process of creating an as-is functional model for the

tactical end of a specific site and the to-be model created from it based on input from

domain experts.

The paper describes the "to be" model and a selected function in that model

extensively. Enterprise functions are generic. The information model is under

development.

[Maimonl] Real-time Operational Control ofFlexible Manufacturing Systems

This paper deals with controlling short-term (a few days) activities of an FMS with a

moderate number of machines. Figure 1 shows an FMS Controller Scheme which has

an integrated architecture with central planning. The architecture includes databases, a

scheduler, resource allocation, controllers, etc. The architecture is described as "a

generic hierarchical control system,” but there seem to be no levels of the control

hierarchy; it looks like central control.

Mathematical models are described for "production surplus state" , "resource state "

,

"capacity”, and "penaltyfunction"

.
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The process sequencer in the control system is an expert system with rules and an

inference engine.

[Martin 1 ] NGC System

This is the first of six draft volumes totalling about 1000 pages describing the SOSAS.
This first volume has four sections.

Section 1, the introduction, gives an “NGC Architecture Overview” in section 1.3.

SOSAS has two distinct categories of architectural elements: services and applications.

Section 3.2 (136 pages) of this volume describes services, volumes 3 through 6 describe

applications, and volume 2 describes data.

Section 2 gives references, including many normative references to other standards.

Section 3 gives systems specification in 3.1, a description of NGC services in section

3.2:

(1) platform,

(2) communications,

(3) data management,

(4) presentation management,

(5) task management,

(6) geometric modeling, and

(7) basic I/O.

in sections 3.2.1. 1 through 3.2. 1.7. Application requirements are given in section 3.3,

integration and configuration environment in section 3.4, and conformance in section

3.5.

Section 4 briefly (4 pages) describes a “Test and Validation Plan"

A detailed glossary is included which includes almost all the terms from the glossaries

in the other five volumes. Most terms that appear in the glossaries of two volumes are

defined the same way in both.

[Martin2] NGC NGC Data

This paper gives formal information models in EXPRESS of information required in

the NGC. Many hundred EXPRESS entities and types are defined.

Section 1.2 describes die models generally. There are three categories of models:

execution, manufacturing practice, and controller practice.

Section 3 (223 pages) gives the EXPRESS models. Rather littie explanatory text

accompanies the formal EXPRESS statements.

A glossary is included.

[Martin3] NGC Workstation Management StandardizedApplication (WMSA)

Workstation management functions are given in section 3.4.2 as:
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(1) handle NML message,

(2) perform workstation start-up sequence,

(3) perform external communications,

(4) control workstation execution,

(5) handle exceptions,

(6) perform shutdown sequence,

(7) configure workstation,

(8) control mode and state,

(9) perform safety,

(10) manage health,

(11) control diagnostics,

(12) schedule task,

(13) determine resource availability,

(14) resource request,

(15) manage application configuration,

(16) provide data logging,

(17) generate OBIOSs calls.

Section 3.4.3 gives system modes as:

(1) start-up,

(2) normal production,

(3) failure recovery,

(4) maintenance,

(5) shutdown.

A glossary is included.

[Martin4] NGC Workstation Planning Standardized Application

Section 3.4.2 gives nineteen functions of workstation planning:

(1) handle NML messages,

(2) set initial equipment states,

(3) generate control plan from task goals,

(4) generate control plan from path goals,

(5) refine workstation plan,

(6) refine task plan,

(7) refine path plan.
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(8) replan,

(9) generate and execute control plan from task goals,

(10) generate and execute control plan from path goals,

(11) refine and execute workstation plan,

(12) refine and execute task plan,

(13) refine and execute path plan,

(14) perform self diagnostic s,

(15) manage configuration,

(16) implement operating modes,

(17) manage state transitions,

(18) handle exceptions,

(19) provide data logging.

Section 3.4.3 describes modes and states.

A glossary is included.

[Martin5] NGC Controls Standardized Application (CSA)

The document is not specific about the type of machine a CSA controller is intended to

control, but a 3-axis machining center fits well.

Section 3.4.2 describes the general non-motion-control behavior of a CSA controller.

Section 3.4.3 gives modes and states of a CSA controller.

Section 3.4.4 describes the motions a CSA controller must be able to produce, plus

other general requirements related to machine functionality.

Section 3.4.5.2 provides NCL commands that include the functions of RS-274-D and

go well beyond into new controller functionality.

A glossary is included.

[Martin6] NGC Sensor/Effector Standardized Application (SESA)

This paper describes the application-independent functions of a sensor/effector

required to fit into a SOSAS compliant system.

A glossary is included.

[Michaloskil] RCS Handbookfor Real-Time Intelligent System Design

This is a detailed handbook (in draft) aimed at people developing RCS systems.

The handbook describes RCS (implicitly on page 2-2) as including a three-level

architectural specification in which the top level of abstraction is called the “RCS
Architectural Model” , the middle level is called “architectural design” and the bottom

level is called a “detailed design"

.
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Section 2.2 presents
"
elements of intelligent control”

.

Section 2.3 presents the "RCS Architectural Model” with the usual features. Also

includes (section 2.3.7) the sensory processing integration hierarchy seen only in other

RCS papers about systems with active vision.

Section 3 gives:

1. Resource Taxonomy

a. object,

b. agent,

c. tool,

2. System Terminology

a. process,

b. hierarchy,

c. node,

d. component,

e. level,

f. branch,

3. Architectural Analysis Criteria

a. multiprocessor parallel architecture,

b. distributed functionality,

c. timing guidelines,

d. operator interface observations,

e. functional decomposition guidelines,

f. top-down vs. bottom-up decomposition,

g. object decomposition guidelines,

h. multiple threads of control,

i. functional coupling of processes,

j. architectural validation with scenarios),

4. An RCS Architectural Example.

Section 4 presents RCS Task Analysis: Task Modeling, Task Frames, and RCS Task

Analysis Methodology.

Section 5 gives RCS Detail Design Principles:

(1) Well-defined Interfaces,

(2) RCS Process Model Principles,

(3) RCS Communication Model Principles,

(4) RCS Human Interface Design Requirements,

(5) RCS Testing and Integration Design Principles.

Section 6 gives RCS Generic Controller Concepts:

(1) RCS Generic Controller Module,

(2) RCS Virtual Machine,
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(3) RCS Communication API,

(4) Task Frames.

The paper says (page 2-10, 3-7) that dynamic reconfiguration is included in RCS
without giving details of how it is to be accomplished.

[Michaloski2] RCS System Factors in Real-Time Hierarchical Control

This paper is narrowly focused on the communications and timing details of using

several processors to implement a controller hierarchy of the RCS sort with several

processes to run. The applicability of the paper is not limited to RCS. It is clearly

written.

[Michaloski3] RCS Design Principlesfor a Real-Time Robot Control System

This paper describes a
"
generic communication and control process

”

(GCCP) which

is a template (but is called an
"
algorithm”

)

for the software of an RCS Module. The

basic architecture for which the GCCP is intended is the NASREM architecture.

Timing considerations are discussed in detail. Two versions of the GCCP template are

given in figures 2 and 3.

The paper includes the design principle that “every process is statically allocated to

memory.”

The paper provides a proof that under certain conditions, “every real-time [GCCP]
process executes deterministically bounded by fixed response time and no processes

deadlock.”

[Mini] MSI A Survey ofthe Literature on Computer Integrated Manufacturing Architectures

This paper focuses on CIM architectures, as indicated by the title. It does not look at

non-manufacturing robotics applications.

The paper lists 14 management functions (without defining them): goal setting,

planning, organizing, staffing, command, coordination, scheduling, execution,

directing, actuating, reporting, budgeting, monitoring, control. Table 1 lists these

according to papers that use them.

Table 6 lists 28 CIM architectures (including five not covered in Table 7) classified

according to: controller structure, scope, genericity, and aspect.

Table 7 has a brief summary of 27 architectures (including four not covered in Table 6).

The paper has several other tables.

The paper does not have an issues analysis.

The paper includes 10 pages of references.
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[Murphy 1] RCS Real-Time Control System Modifications for a Deburring Robot User

Reference Manual

As the title implies, this is a users manual for the NIST AMRF Cleaning and Deburring

Workstation, as it was in 1988. It is given as a series of modifications to the RCS

programmable implementation described in [Leakel], and is written in the terms of

[Leake 1]. Hence, it is not much understandable to anyone not familiar with [Leakel].

There are sections on basic operations, the workstation interface, and changes to: RSL,

task, path, prim, and communication level. An appendix gives operating instructions.

[Norcrossl] AMRF A Control Structurefor Multi-Tasking Workstations

This paper reports on a special-purpose (non-RCS) controller built for the AMRF
Cleaning and Deburring Workstation. As stated in the Summary,

"
This paper outlines

a controller structure based on computer operating system principles. Specifically, the

structure uses Job Control Blocks, an active queue, critical sections, hierarchical task

structure, inter-process communications, and resource allocation to implement an

execution engine which segments tasks and provides for control of multiple

independent tasks and coordination ofmultiple actors .”

[Panl] Pan, Jeff; Tenenbaum, J.; Glicksman, J.; A Frameworkfor Knowledge-Based Computer-

Integrated Manufacturing; IEEE Transactions on Semiconductor

Manufacturing; vol. 2, no. 2; May 1989

This paper gives a “Presentation of an evolving framework for applying knowledge

systems in a manufacturing environment.” The approach is generic. “It consists ofa set

of object-oriented tools for modelling key elements of the environment (processes,

equipment, facilities and operational procedures), and a complementary set of

application-specific shells that use the models to perform common manufacturing tasks

such as monitoring diagnosis, control, simulation, and scheduling .”

One aspect of this approach is creating an overview model for all of the data needed for

the manufacturing tasks and making it available for sharing in a form which can be

understood by all the systems which need it. This form would describe processes, for

example, as a set of specified preconditions, post-conditions, and key parameters.

Another aspect is that all modules for generic manufacturing tasks such as scheduling,

diagnosis, monitoring and control should be decomposed into a task-specific shell that

can be reused in multiple domains. Third, domain-specific knowledge required by

different tasks should be combined into one unified model that can be shared by all

modules.

Tools which they are building address generic issues in software and knowledge

engineering. They have built a tool Manufacturing Knowledge System (MKS), which

enables the approach cited above.

The point is to let the system engineers built these systems themselves with the

assistance of these tools using a graphical interface. The approach assumes an ALPS-
like language for process description. For example, basic types of nodes available are

processing, decision and testing/measurement.
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[Pansel] CIM-OSA CIM-OSA - A Vendor Independent CIM Architecture

This paper gives a well-written but high-level description of CIM-OSA. The CIM-OSA
architecture is intended to support “real time control of all enterprise processes

.”

“CIM-OSA contains two major pans The first ... contains conceptsfor generating

information technology representations of enterprise models. ... The second ...

contains conceptsfor an Integrating Infrastructure within an Information Technology

Environment.” The paper goes on to describe the two parts in sections 2.1 “The

Modelling Framework” and 2.2 “The Integrating Infrastructure”

.

The paper describes the dimensions of the “CIM-OSA Cube” in some detail.

[Quintero 1] RCS RCS Methodology Issues Log

This paper contains a useful listing and discussion of several RCS issues.

[Quintero2] RCS The RCS Methodology: A Task Oriented Methodfor Developing Intelligent

Real-Time Control Systems Software

This paper contains useful discussions of “The Concept of a Generic Controller

Module” and an
“
Overview of the Task Oriented Analysis and Design (TOA&D)

Methodology” for building systems according to the RCS architecture.

This draft appears to be a precursor of [QuinteroS].

The paper includes a glossary.

[QuinteroS] RCS A Real-Time Control System Methodologyfor Developing Intelligent Control

Systems

The RCS architecture, as defined in most other RCS papers, gives an architectural

specification but does not prescribe a complete methodology for architectural

development for building control systems that conform to the specification. Other

papers also do not cover many details that need to be handled in building an

implementation. This paper provides a fuller methodology and suggests how to handle

many implementation details.

The reasons given for developing the methodologies are:

(1) “improving human understanding ofa design,”

(2)
“
managing software complexity,”

(3)
“
providingfor robust, verifiable, efficient, coordinated, real-time

performance,”

(4)
“
providefor extensibility, portability and software reuse.”

The methodology approach given is composed of:

1. integration rules,

2. information models,

3. software execution models,

4. software engineering implementation techniques.
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The RCS architectural specification is summarized in section 2.3.

Section 3 presents “RCS method tenets

1 . Use task oriented decomposition.

2. Use strict hierarchical organization.

3. Organize the control hierarchy around tasks top-down and equipment

bottom-up.

4.

a. Spatial and temporal resolution of adjacent hierarchical levels

should differ by an order of magnitude.

b. Have ten or fewer decisions per plan.

5. A supervisor should have 7 plus or minus 2 subordinates.

6. Each node (controller) has SP/WM/BG (Sensory Processing, World

Modeling, Behavior Generation) functions.

7. Allow a human interface at each node.

8 .

a. Controller modules are finite state machines.

b. Controller modules communicate through common memory.

c. Use cyclic sampling, not interrupts, for context switching.

d. Use non-blocking I/O.

e. Both input and output should be buffered.

f. Implement global memory using a one writer many readers

paradigm.

g. Match the control cycle time to the application demands.

h. Use controller templates.

9.

a. Design for concurrent processing.

b. Measure execution time performance.

c. Allocate sufficient computing resources.

10. Use synchronous control at lowest levels, asynchronous at highest.

Section 4 discusses plans. Plans may be either “path plans

”

or “rule plans" . Rule plans

may be represented in state graphs, state tables, or computer code (an example is shown

in Appendix C).

Section 5 discusses implementation issues:

(1) grouping Job Assignment, Planning and Executor functions,

(2) behavior generation decomposition,

(3) using controller templates,

(4) using a main program template to run several controllers,

(5) required operating system services.

Methodology is mentioned throughout the paper and is the sole topic of Section 6.

Table 1 provides a “Summary of the RCS Methodology Steps"
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The paper does not deal with scheduling, with making the transition from process plans

to production plans, or with resource allocation.

[Rayl] MSI A Production Management Information Modelfor Discrete Manufacturing

This is an MSI paper aimed at one of the three main MSI objectives, identifying and

defining information models.

It presents information models for: shop orders, plans and nodes, resources

(maintained, logical, and material handling). The models are given in NIAM and

explained in text.

Although not the main focus of the paper, there is a description of the intent that

manufacturing planning be done in three stages: process plan, production-managed

plan, and production plan. The process plan is done first and is used as the basis for

building the other plans, which become more specific as scheduling and resource

allocation planning are applied for actual production.

[Senehil] MSI Control Entity Interface Document

This MSI paper presents a summary of the MSI architecture and the interface

specification for controllers in the MSI architecture. Its primary purpose is to document

controller interfaces. A detailed description of the matching version of the architecture

is given in [Senehi2].

The aim of the MSI architecture is to integrate planning, scheduling, and control in a

manufacturing environment Toward this end, a specification of the interaction of

controllers was made. Controllers are considered to be black boxes, the internals of

which are unknown. Only the interfaces and the functionality of the controller must

satisfy the black box specification.

In interactions among controllers, there are two types of functions: administrative and

task. Administrative functions deal with the health of the constituent controllers, start-

up and shutdown of the hierarchy, and dynamic reconfiguration of the hierarchy. Task

functions deal with the disposition of tasks, such as starting, stopping, and monitoring

them.

Controllers, or control entities (CEs) as they are called in the document, are arranged in

a strict hierarchy. Task control information flows parallel to the existing administrative

hierarchy, but is dynamic based upon the current task. Task control is seen as a client-

server interaction where superiors perform the role of task clients and subordinates are

task servers. A guardian interface is provided for human interaction with each

controller. All of the formal interfaces are specified as command and status interfaces.

To support the administration functions, an elaborate state machine is described that

contains 12 states, 5 of which are stable and 7 of which are transitional. The document

describes all the state transitions.

All commands are fully described in the document. There are 10 administrative

commands and 7 task commands.
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The guardian interface includes a console interface for a human. It may be used to

reconfigure the control system (by adding or subtracting subordinates of a CE) or to

change CE mode.

Communications are via NIST’s Common Memory.

The document includes a glossary.

This document is superceded by [Wallace 1].

[Senehi2] MSI Initial Architecture Document

This is an MSI paper presenting a discussion of the first version of the MSI architecture

and architecture issues.

MSI aims to integrate planning, scheduling and control in a manufacturing

environment. MSI identifies sue types of systems which must be integrated in a shop:

process planning, production planning, controllers, order entry, configuration

management, and material handling. The architecture has two main thrusts: information

integration of the previously listed systems, and the integration of control and planning.

The architecture assumes independent control, data, and communications paths.

To address information integration, the architecture describes a number of conceptual

models which must be constructed to describe the information required. In addition,

data storage and access are discussed. The architecture anticipates that systems may
keep any private data that they want, but data which must be shared among two or more

systems is global. In addition, systems may make local copies of global data (for

example, to improve performance). In this case, however, it is required that the system

be responsible for insuring that the global and local data are kept consistent with each

other. The paper includes some discussion of database issues.

The paper presents and discusses a five-interface model with separate administrative

hierarchy, client server network, and guardian (intelligent system or human) interfaces.

For details see [Senehil].

The paper includes good discussions of several issues:

( 1 ) configuration and dynamic reconfiguration,

(2) hierarchical task decomposition,

(3) hierarchical control,

(4) integration of black boxes,

(5) levels of control,

(6) reactive vs. predictive control,

(7) distributed operations,

(8) error recovery,

(9) human interface,

(10) resource allocation,
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(11) resource sharing.

The paper includes a glossary.

The information models corresponding to this version of the document are discussed in

[Rayl] and [Barkmeyer2]. The corresponding interface definitions are in [Wallace 1].

[Senehi3] MSI An Architecturefor Manufacturing Systems Integration

Section 1 introduces the MSI project.

Section 2 gives “the MSI Vision of CIM”

,

which is the authors’ view of factory

integration.

Section 3 outlines the MSI architecture, as it was at the time the paper was written (mid

1991). Information exchange is covered in subsection 3.1, information models (facility,

process and production plan, product, orders, inventory, tooling, work-in-process, and

materials) in subsection 3.2, systems (part design, process planning, production

planning, control, order entry, configuration management, and material handling) in

subsection 3.3, integrating a discrete parts shop in subsections 3.4 and 3.5, and

hierarchical control in subsection 3.6. Discussion of error recovery from scheduling

errors is included.

Although this is the most current available write-up of the MSI architecture, the MSI
architecture has changed slightly since this paper was written.

[Shawl] Dynamic Scheduling in CellularManufacturing Systems:A FrameworkforNetworked
Decision Making

This paper discusses using bidding (in a LAN communications environment) for

scheduling a group of manufacturing cells (a group of physically close machines). The
paper maintains that bidding can be used for dynamic reconfiguration but does not

describe how this might be done.

The paper describes an AI system built by the author for cell-level scheduling. The

system has three hierarchical levels: strategy, meta-planning, and planning.

The paper contains the results of a Monte Carlo simulation of a dynamic bidding

scheme, showing that it performs better than its centralized counterpart, primarily based

on the fact that the scheduling decision is achieved by cells collectively based on purely

local information stored within each cell. The author claims that in the centralized

control system, large amounts of time were needed to keep the system information up

to date.

[Shaw2] Shaw, Michael J.; Whinston, Andrew B. A; Distributed Knowledge-BasedApproach to

Flexible Automation: The Contract Net Framework-, The International Journal

of Flexible Manufacturing Systems; Vol. 1; Kluwer Academic Publishers;

1988; pp. 85 - 104

This paper gives a detailed discussion of contract net bidding. It discusses the concepts

of goal decomposition, task distribution, task execution, and task synthesis. The paper

compares task sharing with result sharing strategies for heterogeneous systems.
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This architecture strategy is based upon the distributed AI approach. It uses petri nets

augmented with production rules as the controller representation.

[Shorterl] CIM-OSA Progress Towards Standardsfor CIM Architectural Frameworks

This paper discusses activities within ISO TC184/SC5/WG1 and European standards-

making groups (including CIM-OSA) on Reference Models for Shop Floor Production

Standards.

Control is a major part of a Factory Automation Model in WG1, as shown in Figure 3,

but that Model “is no longer an explicitpart ofthe Reference Model.” The current Shop

Floor Production Model has four levels (section/area, cell, station, and equipment), but

what they do is not called control (although it sounds like control). In the terminology

of the model, section/area supervises, cell co-ordinates, station commands, and

equipment executes. It is not specified whether the intent is for control to be

hierarchical or heterarchical.

The CIM-OSA cube is described.

[Skevingtonl] Manufacturing Architecturefor Integrated Systems

This paper gives an abstract discussion of CEM architectures.

A few elements of a CIM architecture are proposed: a “meta database”

,

a “meta

operating system" , and a
"
distributed resource manager"

.

"A manufacturing system architecture is the composite model of the virtual system

configurations seen by each of the users"

[Spectorl] Supervenience in Dynamic-World Planning

This is a Ph.D. dissertation. It discusses the differences between planning in a static

world and planning in a dynamic world. It also deals with a number of philosophical

concepts related to control architectures.

The paper distinguishes "teleological goals” (trying to change the state of the world)

from "teleoepistemic goals" (trying to learn something).

The paper introduces the notion of "supervenience” and a "supervenience

architecture”

.

"Domain A supervenes on domain B just in case representations in domain A depend

on representations in domain B; that is, just in case, in matters of interest to both

domains, the representations in domain B take precedence (because domain B is

"closer to the world”). The motivation for the use of supervenience rather than just

"reduction” of A-representations to B-representations, is that A and B might use

different languages (with neither a subset ofthe other), different rules ofinference, etc.”

A symbolic logic view of supervenience is presented.
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The paper describes an implementation of the architecture (called APE - Abstraction

Partitioned Evaluator) for the problem of a robot called “homebot" performing

household chores. A LISP simulation with a moderately complex model of the robot

and its physical environment was used.

The author’s vocabulary and range of expression are broader than those used in any

other paper reviewed for this bibliography.

[Steckel] Stecke, K. E.; Design, Planning, Scheduling, and Control Problems of Flexible

Manufacturing Systems', Annals of Operations Research 3; 1985; pp. 3 - 12

This paper gives a brief overview of problems in flexible manufacturing system (FMS)

design, planning, scheduling, and control (as the title says). It is arranged in an easily

scanned outline form.

The paper focuses on problems of designing a specific FMS, which is expected to stay

in place for some time. Architecture issues are not tackled.

A few of the problems listed are:

Design (13 total)

a. Determine the range of part types to be produced.

b. Specify the type, then capacity of the material handling system.

Planning (5 total)

a. Partition the machines of each type into machine groups.

b. Determine the production ratios.

Scheduling (3 total)

a. Appropriate scheduling methods have to be developed.

Control (4 total)

a. Determine maintenance policies.

[Szabol] RCS Evaluation ofcurrentRCS Methodology

This memo makes the points:

(1) RSD already has several methodology documents.

(2) The term “RCS Methodology
”

is too inclusive, since it covers several ideas

of various levels of acceptance.

(3) Current methodology documents do not describe a formal process.

(4) There is no plan for putting a methodology in place.

(5) There are several conformance issues once a methodology is in place.

The memo recommends:

(1) Produce a methodology like any engineering product.

(2) Develop a classification scheme for methodology concepts. Then decide

which can be agreed on.

(3) Have conformance classes for implementations.
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(4) Define implementation domains according to requirements.

The author believes a formal RCS specification for “design methodology

"

can be

developed quickly within RSD. He contrasts “design methodology” with

“implementation methodology”

.

It appears he intends that a design specification is part

of a “design methodology”

.

[Szabo2] RCS Control System Architecturefor Unmanned Land Vehicles

This is a brief overview of the architecture of a control system developed at NIST for

controlling an unmanned ground vehicle running on a road. RCS methodology and the

specific architecture for this system are presented briefly.

Rather than perception being part of sensory processing, it is one of two main tasks of

the system, the other being mobility.

The architecture and system diagram for the mobility controller are given in figures 2

and 3.

A task called “retro" is described, in which the vehicle travels in the opposite direction

along the path it has been following.

[Szabo3] RCS Control System Architecturefor Unmanned Ground Vehicles

This paper describes how NASREM could be applied to the U.S. Army TEAM project

for controlling multiple unmanned ground vehicles.

The second section summarizes the NASREM architecture. The third section describes

the TEAM application, including a mission scenario. The fourth section describes RCS
hierarchical task decomposition as applied to the TEAM application. The fifth section

covers a few communications issues.

[Szabo4] RCS Control System Architecturefor a Remotely Operated Land Vehicle

This paper gives details of the TEAM controller architecture.

The “Introduction” section briefly describes the TEAM program, the application

scenario (two Robotic Combat Vehicles operating under remote control), and RCS
architecture.

The “Control Architecture” section gives detailed controller hierarchies for TEAM
Robotic Combat Vehicles and their superiors.

The “Mobility Design Details”, “Remote Control" , and “Retro-traverse” sections

describe how remote control and automatic back-tracking are handled in the

application.

The “Communications Design Details" section presents what its title says.

The “Implementation” section describes the computer and communications hardware

and some software used in the control system.

[Szabo5] RCS Control System Architecturefor the TEAM Program

This is nearly identical to [Szabo3].
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[Tingl] A Cooperative Shop-Floor Control Modelfor Computer-Integrated Manufacturing

This paper presents a heterarchical system for shop floor control, including resource

allocation and a bidding procedure. The shop floor model includes: a communications

network, work modules, a management module, a transportation network, hardware

storage modules, and a software module.

The model uses “pull control with deferred commitment.”

Local optimality is claimed.

The conclusions include: “The performance issue of the control model in a large scale

FMS, however, is not addressed in this paper," and ‘Another limitation of this model is

its inability of providing global production solutions beyond the work in process

inventory control.”

Figure 1 shows an unusual view of the context of shop-floor control.

[Upton 1] Architectures andAuctions in Manufacturing

This is a well-written article discussing the problem of predicting what a small portion

of a heterarchical system will do under some simple assumptions about bidding-

contracting and queuing procedures.

The authors sound sympathetic to heterarchical systems, but conclude that "the queue-

theoretical analysis ofeven the simplest auction-based system is difficult,” and “There

are a large number of technological issues which need to be resolved before large

manufacturing systems may be controlled in this manner.”

The author hints at hybrid heterarchical and hierarchical architectures not discussed in

this paper.

[Vamosl] Cooperative Systems Based on Non-Cooperative People

This is a semi-popular style article endorsing heterarchical systems. Contrary to the

title, the autonomous units in the system are assumed to be cooperative.

The article makes the point that controlling large systems and predicting their behavior

becomes non-linearly more difficult with the size of the system. The article suggests

that, faced with the problem being impossible, it is more reasonable to deal with the

problem using a network of cooperating autonomous agents than a hierarchy, since this

seems robust.

The article acknowledges that there are “modeling problems" with heterarchical

systems, such as determining stability.

[VanHarenl] A Reference Modelfor Computer Integrated Manufacturingfrom the View Point

ofIndustrial Automation

This paper mentions other reference models. Table I lists eleven “reference modelsfor

CIM" and gives citations. Table II lists “characteristics ofCIM reference models"

,

but

is very terse.
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The paper describes, in general terms, a CIM Reference Model developed by the

International Purdue Workshop on Industrial Computer Systems.

“In Figure 9 [page 56] the CIM model is represented in the implementation hierarchy

view by an eleven layer structure.” The layers are described on pages 57 and 58.

The paper says that more details are given in a book about the model.

[Wallace 1] MSI Control Entity Interface Document

This is an MSI paper presenting a summary of the MSI architecture and a detailed

specification of the interfaces in the architecture. This paper supersedes the 1991

NISTTR of the same name, whose principal author was Senehi.

A "control entity

"

includes one or both of a "planner" and a "job controller Control

entities which have job controllers are always arranged hierarchically with zero (at the

top) or one (everywhere but the top) superior and zero to many subordinates. Planning

may be done centrally, hierarchically, or in mixed mode.

Control hierarchies may go to different levels on different branches. The top level is

called "shop", the bottom "equipment" ,
and everything in between “workcell"

.

There

is no preset number of levels. There is no presumption about the speed of any controller,

the physical extent of what the controller controls, or the number of its subordinates.

There is a communications paradigm for communicating between entities. The

communications media carry messages between entities. Messages are in two types:

"request!response pair" and "unconfirmed message”

.

The architecture uses three kinds of plans: process plans (generic recipes), production-

managed plans (created from process plans), and production plans (scheduled activities

with resources allocated). Production plans are what gets carried out. The paper does

not deal with the creation or definition of process plans or production-managed plans.

The paper deals with creating production plans from existing production-managed

plans.

Production plans and the steps of which they are composed have states. Planners in

separate control entities deal with each other by a negotiation procedure whose details

are given in the paper.

Error recovery for scheduling errors is possible using the messages defined in the

specification. Error detection and recovery capability for resource and execution errors

is included via a guardian interface and a watchdog interface.

The guardian interface includes a console interface for a human. It may be used to

reconfigure the control system and for several other purposes.

The paper devotes a chapter to each of the 5 types of interface in the architecture:

planning to planning, job control to job control, planning to job control, guardian to

planning, and guardian to job control.

Much of the paper is devoted to tables giving the explicit semantics of various messages
and responses. There are also several state transition diagrams.
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The paper includes a sample error recovery scenario which has been worked out in

detail.

The paper includes a glossary. Almost all terms in the glossary are specific to the

architecture, rather than being commonly used terms.

The paper defines “data objects" of several types but does not discuss other database

issues. Although database issues are important in MSI effort, they are handled in other

papers.

[Waveringl] RCS Manipulator Primitive Level Task Decomposition

This paper describes how the primitive (as defined in NASREM) level task

decomposition function works in the case of a trajectory module in a hierarchical

manipulator control system.

No specific robot is described to which this control system is intended to be applied.

The primitive level task decomposition module is divided into the usual three parts

defined in RCS: job assignment, planning and execution. These three parts have

defined interfaces to each other. Several of these parts also each have their own
interfaces to external modules, including: prim job assignment to world modeling, prim

planning to world modeling, prim execution to world modeling, e-move to prim job

assignment, and prim execution to servo task decomposition.

A lot of technical issues associated with trajectory planning and execution are

discussed.

Timing and processing power requirements are discussed.

The controller under discussion is capable of queueing commands.

The paper notes on page 5 that
“
there is no direct correspondence between sensory

processing levels and task decomposition levels

The paper contains an extensive bibliography.

[Wavering2] RCS The Real-Time Control System ofthe Horizontal Workstation Robot

This is a user and system programmer’s manual for the control system for the T3 robot

in the NIST AMRF Horizontal Workstation. The control system methods of this paper

are those described in [Leake 1].

Chapter 2 describes the functions the robot performed in the workstation and the overall

architecture of controlling the robot and its ancillary equipment, which included three

different grippers (usable one at a time), a vision system (not described in this report)

and an active pedestal vise. Section 2 of the chapter gives an “Overview ofthe RCS-II

Architecture" including:

2.1 “Hierarchical Task Decomposition” - includes a controller hierarchy

diagram,

2.2 “Generic Control Process Structure” - uses pre-process, decision

processing, post-process paradigm where the decision processing uses
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two levels of state table; the top one just selects the correct state table

for the particular command,

2.3
"
Cyclic Execution,"

2.4 “Common Memory"

.

Chapter 3 shows the computer and other electric or electronic hardware configuration.

Chapter 4 tells how to start the system up, run it, and shut it down.

Chapter 5 describes tasks and command messages for the prim, e-move, subtask, and

task level of the hierarchy. Chapter 6 does the same for other control system processes.

Chapter 7 describes the low-level (at the memory block level!) data structures used by

the system.

Chapter 8 gives an example of entering data for a new part.

Chapter 9 describes external communications, which included communications with

two controllers in the hierarchy (vision and active pedestal) as well as the (superior)

workstation controller and the (completely external) AMRF database.

[Wendorfl] Structured Development ofa Generic Workstation Controller

This paper describes a workstation controller with four interface types: command and

status to superior, command and status to subordinates, load recipes, and exchange

parts.

A language called LOTOS is used for defining controller interfaces and representing

control processes. LOTOS has a generic concept of interactions, temporal ordering

principles, mechanisms for process abstraction and abstract data types. It can represent

when processes are able to interact It was developed by ISO for the specification of

computer protocols.

With respect to the activities a controller can carry out (which are expected to be

scheduled), the paper distinguishes between individual steps, like grind or drill, and sets

of steps which have to be executed sequentially (which it calls “operations"). The sets

are useful because they are the units which are scheduled. This is a nice idea for

simplifying the job of scheduling.

In the implementation, C++ code for a controller is generated automatically from

LOTOS statements.

Internally, a controller may be broken down into three modules: a command receiver

and dispatcher and part exchanger, a world modeler, and a status receiver and

dispatcher. No rationale is offered for this decomposition. The modules may be

represented by separate LOTOS processes.

No communications protocol is discussed. All controllers in the implementation

described run on the same board, so shared memory is used.

The implementation includes something defmed as a “queue"
, but only one item at a

time may be put into the queue.
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[Weston 1] Highly Extendable CIM Systems Based on an Integration Platform

This paper presents an approach to CIM integration that is not quite an architecture. It

is intended to cover almost the entire life cycle of a product: inception, design,

manufacture, sales, re-engineering, andfield support/maintenance. It is intended to be

an immediate solution to the real-world CIM integration problem.

CIM is described as having three architectures: communication, application, and

information. A facility called AUTOMAIL, being developed in a research

environment, is described which addresses all three architectures:

“The AUTOMAIL connection architecture provides an application process with a

uniform communication interface . . . The action architecture provides applications with

a uniform message set ... the AUTOMAIL information architecture provides each

application with a standard interface, currently SQL, into the available information

resources.”

A second, prototype, system called SEFIMA, similar in purpose to AUTOMAIL, is

being developed in an industrial environment.

The system descriptions are brief.

[Yoderl] Yoder, James R.; Toward a New CIM Architecture for Sandia Laboratories
;

Proceedings ofCIMCON ‘90, NIST Special Publication 785; National Institute

of Standards and Technology; May 1990; pp. 326 - 333

This paper provides an example of the kinds of things one laboratory wants to

incorporate in a toolkit for CIM. It includes a brief discussion of how the scope of the

architecture was determined.
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Appendix E - Detailed Comments on Other Architectures

E.l CIM-OSA

CIM-OSA (Computer Integrated Manufacturing - Open Systems Architecture) is an

architecture being developed by the ESPRIT (European Strategic Program for Research

and development in Information Technology) AMICE (European CIM Architecture)

project [Chenl], [Joryszl], [Jorysz2], [Klittichl], [Klittich2], [Pansel], [Shorterl]. The

aim of the architecture is to provide an integrated framework to support manufacturing

within an enterprise. The documentation of CIM-OSA does not define clearly what the

framework is. It includes, at least, an integrated data system architecture for

manufacturing enterprises.

The CIM-OSA architecture was discussed briefly in Section 6.3.1. This appendix gives

further details.

The CIM-OSA scope (as shown in [Joryszl, Figure 4], for example) is limited to CIM
but looks at the whole system life-cycle, including consideration of requirements

specifications at one end and system change at the other.

The CIM-OSA architecture has three levels of architectural definition: generic, partial,

and particular, but the CIM-OSA documentation does not give many details about the

intended nature of each level.

The data system architecture provides “front end services” to users. There are four types

of front end service: application (e.g., CAD or CAPP), human, machine (e.g., robot or

NC machine tool), and data management. The front end service uses a “data access

protocol” to provide the requested service. The two data access protocols are “business

process services” and “information services”.

Although the long-term data system is intended to be as just described, Release 1 of

CIM-OSA includes a different data system architecture [Klittich2], which is

conceptually similar to the IMDAS (Integrated Manufacturing Data Administration

System) architecture used in the AMRF [Barkmeyerl]. In the Release 1 architecture,

each application has a database divided into private and public parts. To deal with

public data, each application has two data service modules: (i) an application front end

module connected to the application and (ii) a data management module connected to

the public part of the application’s database. The two modules are connected to a

system-wide data agent.

It appears that all non-private data is intended to be globally accessible. There is no

provision for direct data exchange between applications.

No specific communications architecture is prescribed, although the documentation

mentions OSI.

The CIM-OSA documentation puts emphasis on the “CIM-OSA cube”, which is shown
in Figure 1 1, a reproduction of figure 1 from [Joryszl, page 147]. The three dimensions

of the cube are stepwise generation (values: function, information, resource,

222



Feasibility Study: Reference Architecture

organization), stepwise instantiation (values: generic, partial, particular), and stepwise

derivation (values: requirements definition, design specification, implementation

descriptions).
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Figure 11. CIM-OSA Architecture: Overview
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CIM-OSA takes a very broad view of the scope of a CIM architecture. It intends to

cover the entire life cycle of a system, including:

( 1 ) system requirements specification,

(2) system design,

(3) system description for build and release,

(4) system operation,

(5) system change.

CIM-OSA intends to go so far as to provide for automatically generating executable

code from the requirements specification.

The CIM-OSA architecture is a work in progress. Prototype applications conforming to

the architecture are only now being built.

Surprisingly, CIM-OSA does not include control in the architecture specifications.

There is not even any discussion of control processes as independent entities.

The CIM-OSA cube does embody some methodology for architectural development.

The stated intent for developing systems is to go from left to right on the cube (generic

to partial to particular) and top to bottom (requirements definition to design

specification to implementation description). The third (front to back) axis, labelled

stepwise generation, is not intended to be ordered, although the arrow on the figure

makes it look ordered. It is not stated how many of the 36 mini-cubes that make up the

CIM-OSA cube are intended to be populated in the process of developing a control

system.

CIM-OSA does not propose any specific languages or techniques for expressing an

architectural design or building an architecture.

The CIM-OSA example is useful for considering the scope of an architecture and

provides the skeleton of a methodology for architectural development, but it has little

to say directly about control.

E.2 Dornier

The Dornier architecture was discussed briefly in Section 6.2.2.2. This section provides

additional details and background on the architecture.

Under contracts from the European Space Agency, the Dornier firm produced several

papers [Domierl], [Domier2], and others concerning control architectures. One of

these [Domier2] proposes a reference architecture for European space automation and

robotics control systems. The architecture is intended to be suitable for at least robot

systems, surface roving vehicles, and dedicated automation equipment The paper

makes a detailed presentation of the architecture. The same architecture is summarized

more briefly in the latter part of [Domierl]. The authors are not aware of any

implementations of the Dornier architecture.

The Dornier architecture has four levels of architectural definition.
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A three layer control hierarchy is proposed [Domier2, page 52]. From the top down, the

layers are named A&R Mission Planning and Control, Task Planning and Control, and

Action Planning and Control. The use of a hierarchy is justified [Domier2, pages 45-

46], but no rationale is offered for why three layers are suitable, rather than four, six, or

a variable number depending upon the application.

Each controller has three major modules: nominal feedback functions, forward control

functions, and non-nominal feedback functions, as shown in Figure 12, which

reproduces Figure 5.4. 1-1 from [Domier2, page 53]. For a single controller, six types

of data flow between modules, four types of data flow to external systems, seven types

of data flow with superiors, and seven types of data flow with subordinates are

specified.

NFii+1 FCi+l NNF:i+l

info info Handling

NF,_1 FCj. NNF,.]

main control flow iiiiiiiiiiiiiiiiiiHiiiiiiiiiiiiiii main data flow

auxiliary control flow auxiliary data flow

Figure 12. Dornier Architecture: A Controller
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No rationale is offered for the decomposition of a controller into three modules in this

paper, but it is clear a great deal of thought went into the decomposition. Perhaps other

papers in the same series (which are referenced in [Domier2]) present a justification.

The interconnections between layers and modules are so numerous that control system

behavior and performance may be hard to predict. The ability of the non-nominal

feedback module to do planning and give “directives” to the forward control module

looks particularly worrisome.

The Domier architecture provides the most formalized methodology for architectural

development of all the architectures examined for this report. The methodology uses the

“structured analysis and design technique” (SADT). The steps and documents required

by the methodology are shown in overview in figures 3.3-1 [Domier2, page 17] and in

more detail in figures 3.3-2, and 3.3-3 [Domier2, page 19]. The control development

methodology is discussed in detail in [Domier2, pages 95-106].

Figure 13 is a modified version of figure 3.3-1 from [Domier2]. As shown in the figure,

the documents to be produced in the course of developing a specific implementation

include: activity script, application architecture, operations architecture, and logical

model of control system. The functional reference model mentioned in the figure is the

application-independent reference model described in section 5 of [Domier2] and

briefly described above. The physical model of the control system shown at the bottom

of the figure is the actual hardware and software of the control system.

Activity scripts are prepared using an activity analysis methodology (ActAM) and
written in an activity scripting language (AcSL) which has not been rigorously

formalized. Examples of scripts are given in an appendix of [Domier2].

As described in [Domier2], the Domier proposal does not deal much with database,

communications, resource allocation, scheduling, or dynamic reconfiguration issues.

There is no discussion of world modeling.
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Figure 13. Dornier Methodology for Architectural Development
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Appendix F - Additional Hierarchical Controller Issues

In the course of preparing this report, several issues were considered that were too

specific to hierarchical controller architectures to raise in sections 4 or 5. Most of these

have arisen in RCS discussions. They are listed in this appendix with little discussion.

F.l Hierarchical Levels

F. 1 . 1 Significance of Hierarchical Levels

Levels in a hierarchy may be given a great deal of significance or little, depending upon

the specification of what constitutes a level. There are at least three different ways of

making this specification.

In the first method, a controller hierarchy is built from the top down (the way a function

call hierarchy in a computer program is normally built) without considering classes of

controllers with similar characteristics. The level of any controller may be determined

after the fact by just counting the length of the control chain from the top of the

hierarchy to the controller in question. The controller at the top of the hierarchy is the

only controller in level 1, its subordinates constitute level 2, the subordinates of level 2

constitute level 3, and so on. In this case, the level of a controller tells little, and the

controllers in a level cannot be expected to have similar characteristics. If a level is

given a name (e.g. “shop level”, “cell level”, etc.), the name may well not reveal

anything useful about the level.

In the second method, a controller hierarchy is built from the bottom up, and all the

controllers in the lowest level control equipment (e.g., robot, machining center, vise),

so that the name “equipment level” may be meaningfully applied to the lowest level.

The equipment is grouped by some method (usually by grouping equipment whose

actions must be coordinated), and a superior controller is defined for each group. The

set of controllers superior to equipment controllers then constitutes the next level up.

These controllers are grouped under superior controllers, and so on until there is a level

with only one controller. That is the top level. The length of the chain between an

equipment controller and the top level may vary.

In the third method, the architecture may specify that the controller hierarchy of any

implementation must include a fixed number of named levels and that there must be

certain similarities among all the controllers in l given level. For example, there may
be shop, task, primitive, and servo levels, and all controllers at the primitive (or any

other) level may be required to have the same cycle time. Doing this might make it

feasible, for instance, to run all the controllers in a level on the same processor.

Some issues arise only if the third method - where controllers in a level are required to

have similarities - is used. For example: can a controller have a subordinate in the same
level or from more than one level down? Under the first or second method, the

statement of this issue does not even make sense.
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F. 1 .2 Number of Hierarchical Levels

Should an architecture require a fixed number of hierarchical levels? If so, how many
levels should there be?

If the architecture allows a variable number of levels, what basis should be used to

determine when a new level should be added?

F. 1 .3 Characteristics of a Hierarchical Level

If controllers are assigned to levels based on having similar characteristics, what should

these characteristics be - cycle time, nature of tasks handled, or what? If controllers are

similar with respect to one characteristic, is it reasonable to expect them to be similar

with respect to other characteristics?

F.2 Decomposition

F.2. 1 Temporal Decomposition

What is the importance of having lower hierarchical level controllers run faster? Should

this be an architectural requirement?

RCS specifies an order of magnitude factor in temporal resolution (e.g. planning

horizon) from level to level. Having lower levels run fast is often critical for hard real-

time operation. In some implementations of Barbera RCS, all of the controllers execute

at the same rate but their goal completion rates are faster at lower levels.

For many control law algorithms, having lower levels run faster is required for stability.

F.2.2 Spatial Decomposition

What is the importance of having lower level controllers deal with smaller physical

areas? Should this be an architectural requirement?

RCS specifies an order of magnitude in spatial resolution (e.g. maps) from level to

level.

F.3 Subordinates Per Superior

Should a range of numbers of subordinates per superior be specified? RCS specifies 5

to 9, for example. Limiting the number of subordinates is useful for managing

complexity and making the control system easier to understand, particularly if the

subordinates perform many different functions.

F.4 Controller and Task Hierarchy Design

What are the best methods of building controller hierarchies and task hierarchies? How
do the two jobs interact?

Without offering a full discussion of this issue, we note that there is one well-accepted

way to get started with task and hierarchy design.
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In building many implementations, the lowest level of the control hierarchy and the

lowest level of tasks are defined around the equipment, because it is usually desired to

use existing types of equipment, it is usually straightforward to identify what these

types are, and existing equipment usually comes with a specialized controller. Thus,

starting the definition of controller hierarchies and tasks at the equipment level is

generally effective. There is one controller for each piece of equipment, and the atomic

tasks that an equipment controller can do are the things the equipment can do.
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Appendix G - Index to Glossary Terms

This appendix gives the page numbers on which terms in the Glossary are defined or discussed. It

is not an index to all uses of the terms.

A

analysis 1

1

application 6

architectural specification 6, 7, 16

architectural unit 6

architecture 6

aspect 15

atomic unit 16

B

black box 17, 80

broadcast communication 38

C

centralized control 47

command 24

command and status exchange 32

command-and-status protocol 32

component 6

conceptual model 15

conformance class 22

conformance criteria 7, 12

conformance test 21

controller 25

cyclic development 20

D

domain 6

domain analyses 7, 10, 14

dynamic analysis 1

1

dynamic aspects 16

dynamic reconfiguration 42

E

element of architectural definition 6

execution model 26

F

functional analysis 1

1

functional aspects 15
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G

goal 24

granularity 16

H

hard real-time 41

heterarchical control architecture 50

hierarchical 30

hierarchical control architecture 48

I

implementation 6

information analysis 1

1

information aspects 15

information modeling language 18

interoperable 80

L

life cycle (of a control system) 13

M
methodology 1

1

methodology for architectural development 7,11

molecular unit 17

multicast communication 38

N

non-persistent data 34

O

operational mode 27

operational state 26

organizational extent 14

P

persistent data 34

plan 24, 34

planner 25

planning 24, 36

point to point communication 38

process 17, 19

process plan 34

process planning 36
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R

real-time 41

reference architecture 6

resource allocation 36, 37

resource definition 34

S

scheduler 25

scheduling 25, 36

soft real-time 41

statement of purpose 10

statement of scope 10

statement of scope and purpose 13

step 24

submodule 17

synchrony 30

T

task 24, 31

tier 7

tier of architectural definition 7, 14

W
work element 24, 31

world model 58
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